Design Methods and Strategies for Forward and Inverse Problems of Turbine Blades Based on Machine Learning

2022 ◽  
Vol 31 (1) ◽  
pp. 82-95
Author(s):  
Haimeng Zhou ◽  
Kaituo Yu ◽  
Qiao Luo ◽  
Lei Luo ◽  
Wei Du ◽  
...  
Author(s):  
Zheyuan Zhang ◽  
Tianyuan Liu ◽  
Di Zhang ◽  
Yonghui Xie

Abstract In this paper, a method for predicting remaining useful life (RUL) of turbine blade under water droplet erosion (WDE) based on image recognition and machine learning is presented. Using the experimental rig for testing the WDE characteristics of materials, the morphology pictures of specimen surface at different times in the process of WDE are collected. According to the data processing method of ASTM-G73 and the cumulative erosion-time curves, the WDE stages of materials is quantitatively divided and the WDE life coefficient (ζ) is defined. The life coefficient (ζ) could be used to calculate the RUL of turbine blades. One convolutional neural network model and three machine learning models are adopted to train and predict the image dataset. Then the training process and feature maps of the Resnet model are studied in detail. It is found that the highest prediction accuracy of the method proposed in this paper can be 0.949, which is considered acceptable to provide reference for turbine overhaul period and blade replacement time.


Author(s):  
Jan Bosch ◽  
Helena Holmström Olsson ◽  
Ivica Crnkovic

Artificial intelligence (AI) and machine learning (ML) are increasingly broadly adopted in industry. However, based on well over a dozen case studies, we have learned that deploying industry-strength, production quality ML models in systems proves to be challenging. Companies experience challenges related to data quality, design methods and processes, performance of models as well as deployment and compliance. We learned that a new, structured engineering approach is required to construct and evolve systems that contain ML/DL components. In this chapter, the authors provide a conceptualization of the typical evolution patterns that companies experience when employing ML as well as an overview of the key problems experienced by the companies that they have studied. The main contribution of the chapter is a research agenda for AI engineering that provides an overview of the key engineering challenges surrounding ML solutions and an overview of open items that need to be addressed by the research community at large.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2341 ◽  
Author(s):  
Chun-Yi Zhang ◽  
Ze Wang ◽  
Cheng-Wei Fei ◽  
Zhe-Shan Yuan ◽  
Jing-Shan Wei ◽  
...  

The effectiveness of a model is the key factor of influencing the reliability-based design optimization (RBDO) of multi-failure turbine blades in the power system. A machine learning-based RBDO approach, called fuzzy multi-SVR learning method, was proposed by absorbing the strengths of fuzzy theory, support vector machine of regression (SVR), and multi-response surface method. The model of fuzzy multi-SVR learning method was established by adopting artificial bee colony algorithm to optimize the parameters of SVR models and considering the fuzziness of constraints based on fuzzy theory, in respect of the basic thought of multi-response surface method. The RBDO model and procedure with fuzzy multi-SVR learning method were then resolved and designed by multi-objective genetic algorithm. Lastly, the fuzzy RBDO of a turbine blade with multi-failure modes was performed regarding the design parameters of rotor speed, temperature, and aerodynamic pressure, and the design objectives of blade stress, strain, and deformation, and the fuzzy constraints of reliability degree and boundary conditions, as well. It is revealed (1) the stress and deformation of turbine blade are reduced by 92.38 MPa and 0.09838 mm, respectively. (2) The comprehensive reliability degree of the blade was improved by 3.45% from 95.4% to 98.85%. (3) It is verified that the fuzzy multi-SVR learning method is workable for the fuzzy RBDO of complex structures just like a multi-failure blade with high modeling precision, as well as high optimization, efficiency, and accuracy. The efforts of this study open a new research way, i.e., machine learning-based RBDO, for the RBDO of multi-failure structures, which expands the application of machine learning methods, and enriches the mechanical reliability design method and theory as well.


2011 ◽  
Vol 27 (7) ◽  
pp. 075002 ◽  
Author(s):  
H T Banks ◽  
K Holm ◽  
F Kappel

Author(s):  
Taylor Regan ◽  
Rukiye Canturk ◽  
Elizabeth Slavkovsky ◽  
Christopher Niezrecki ◽  
Murat Inalpolat

Wind turbine blades undergo high operational loads, experience variable environmental conditions, and are susceptible to failures due to defects, fatigue, and weather induced damage. These large-scale composite structures are essentially enclosed acoustic cavities and currently have limited, if any, structural health monitoring in practice. A novel acoustics-based structural sensing and health monitoring technique is developed, requiring efficient algorithms for operational damage detection of cavity structures. This paper describes a systematic approach used in the identification of a competent machine learning algorithm as well as a set of statistical features for acoustics-based damage detection of enclosed cavities, such as wind turbine blades. Logistic regression (LR) and support vector machine (SVM) methods are identified and used with optimal feature selection for decision making using binary classification. A laboratory-scale wind turbine with hollow composite blades was built for damage detection studies. This test rig allows for testing of stationary or rotating blades (each fit with an internally located speaker and microphone), of which time and frequency domain information can be collected to establish baseline characteristics. The test rig can then be used to observe any deviations from the baseline characteristics. An external microphone attached to the tower will also be utilized to monitor blade damage while blades are internally ensonified by wireless speakers. An initial test campaign with healthy and damaged blade specimens is carried out to arrive at certain conclusions on the detectability and feature extraction capabilities required for damage detection.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 190 ◽  
Author(s):  
A. Joshuva ◽  
V. Sugumaran

This study is to identify whether the wind turbine blades are in good or faulty conditions. If faulty, then the objective to find which fault condition are the blades subjected to. The problem identification is carried out by machine learning approach using vibration signals through statistical features. In this study, a three bladed wind turbine was chosen and faults like blade cracks, hub-blade loose connection, blade bend, pitch angle twist and blade erosion were considered. Here, the study is carried out in three phases namely, feature extraction, feature selection and feature classification. In phase 1, the required statistical features are extracted from the vibration signals which obtained from the wind turbine through accelerometer. In phase 2, the most dominating or the relevant feature is selected from the extracted features using J48 decision tree algorithm. In phase 3, the selected features are classified using machine learning classifiers namely, K-star (KS), locally weighted learning (LWL), nearest neighbour (NN), k-nearest neighbours (kNN), instance based K-nearest using log and Gaussian weight kernels (IBKLG) and lazy Bayesian rules classifier (LBRC). The results were compared with respect to the classification accuracy and the computational time of the classifier.  


2021 ◽  
Author(s):  
Artur Movsessian ◽  
David Garcia Cava ◽  
Dmitri Tcherniak

In recent years, Machine Learning (ML) techniques have gained popularity in Structural Health Monitoring (SHM). These have been particularly used for damage detection in a wide range of engineering applications such as wind turbine blades. The outcomes of previous research studies in this area have demonstrated the capabilities of ML for robust damage detection. However, the primary challenge facing ML in SHM is the lack of interpretability of the prediction models hindering the broader implementation of these techniques. For this purpose, this study integrates the novel Shapley Additive exPlanations (SHAP) method into a ML-based damage detection process as a tool for introducing interpretability and, thus, build evidence for reliable decision-making in SHM applications. The SHAP method is based on coalitional game theory and adds global and local interpretability to ML-based models by computing the marginal contribution of each feature. The contribution is used to understand the nature of damage indices (DIs). The applicability of the SHAP method is first demonstrated on a simple lumped mass-spring-damper system with simulated temperature variabilities. Later, the SHAP method has been evaluated on data from an in-operation V27 wind turbine with artificially introduced damage in one of its blades. The results show the relationship between the environmental and operational variabilities (EOVs) and their direct influence on the damage indices. This ultimately helps to understand the difference between false positives caused by EOVs and true positives resulting from damage in the structure.


Sign in / Sign up

Export Citation Format

Share Document