scholarly journals Analysis of fracture toughness in the transition-temperature region of an Mn-Mo-Ni low-alloy steel

2003 ◽  
Vol 34 (6) ◽  
pp. 1275-1281 ◽  
Author(s):  
Sangho Kim ◽  
Byoungchul Hwang ◽  
Sunghak Lee ◽  
Sunghak Lee
Author(s):  
Kiminobu Hojo ◽  
Kentaro Yoshimoto ◽  
Ryuichi Yamamoto ◽  
Toshihiro Matsuoka ◽  
Uwe Mayer

The transportation and storage casks have to be designed by considering transport and handling accidents. IAEA safety standard [1] requires drop test using a scale model and demonstration of structural integrity of the cask container vessel from the view point of leakage and instable fracture. For the fracture evaluation, it has to be verified that brittle fracture does not occur at the lowest temperature −40degC. MHI has developed the MSF-57BG cask whose body is made of forged low alloy steel LF3-m. It is well known that low alloy steel has the brittle-to-ductile transition temperature range of fracture toughness and large scatter of toughness value in this region. For the cask’s integrity evaluation, it is needed to obtain the fracture toughness dependent on temperature of this material by considering data scatter. The Master curve procedure [2] was proposed for estimation of fracture toughness of the pressure vessel on the basis of statistical procedure by using relatively small number of specimens. This paper examined the determination method of fracture toughness considering dynamic loading effect and data scatter in the brittle-to-ductile transition temperature by using the Master curve procedure.


Author(s):  
Miguel Yescas ◽  
Pierre Joly ◽  
François Roch

Abstract Dissimilar Metal Welds (DMW) are commonly found between the ferritic low alloy steel heavy section components and the austenitic stainless steel piping sections in nuclear power plants. In the EPR™ design which is the latest FRAMATOME Pressurized water reactor (PWR) these DMW involve a narrow gap technology with no buttering, and only one bead per layer of a nickel base alloy weld filler metal (Alloy 52). In order to assess the thermal aging performance of this relatively new narrow gap DMW design, a significant internal R&D program was launched some years ago. Several representative mock-ups were thoroughly characterized in the initial condition as well as in the thermal aged condition, up to 50,000 hours aging at 350°C. The characterisations were focused on the fusion line between the ferritic low alloy steel (LAS) and the nickel base alloy since a particular microstructure is present in this area, especially in the carbon depleted area of the Heat Affected Zone (HAZ) which is often regarded as the weak zone of the weld joint. Metallography, hardness, nanohardness, chemical analyses, and Atom Probe Tomography, as well as fracture toughness tests were carried out on different specimens in different thermal aging conditions. The results show that the fracture toughness behaviour in the ductile-brittle domain of the low alloy steel carbon depleted HAZ at the interface with the alloy 52 weld metal of the DMWs is excellent, even for a thermal ageing equivalent to 60 years at service temperature. This was found in spite of the carbon depleted zone of the HAZ, the variations of hardness, chemical composition, particularly the carbon gradients, and the thermal aging effect induced by phosphorous segregation at grain boundaries.


Author(s):  
Pierre Joly ◽  
Miguel Yescas ◽  
Elisabeth Keim

Dissimilar metal welds (DMW) are used in nuclear power plants between the nozzles of main components in low alloy steel and stainless steel pipes, or safe-ends connected to the main coolant line pipes. AREVA proposes for EPR™ an improved design of DMW involving narrow gap welding without buttering between the low alloy steel nozzles and the stainless steel safe-ends, and the use of a corrosion resistant weld filler metal (Alloy 52). AREVA performed a thorough characterization of this type of welds, which shows a particular microstructure close to the fusion line between the low alloy steel and the nickel base alloy, where the heat affected zone of the low alloy steel is decarburized. This paper presents results of fracture toughness tests performed with the crack tip located in this area, in the ductile to brittle transition in the as post-welded heat treated condition and after thermal ageing. The results show an excellent fracture toughness behavior of this particular area, compared to that of low alloy steel parent metal.


Sign in / Sign up

Export Citation Format

Share Document