Direct observations of the α → γ transformation at different input powers in the heat-affected zone of 1045 C-Mn steel arc welds observed by spatially resolved X-ray diffraction

2005 ◽  
Vol 36 (12) ◽  
pp. 3353-3369 ◽  
Author(s):  
T. A. Palmer ◽  
J. W. Elmer
2020 ◽  
Vol 4 (6) ◽  
Author(s):  
A. Mandal ◽  
B. J. Jensen ◽  
M. C. Hudspeth ◽  
S. Root ◽  
R. S. Crum ◽  
...  

Author(s):  
Mateus Dobecki ◽  
Alexander Poeche ◽  
Walter Reimers

AbstractDespite the ongoing success of understanding the deformation states in sheets manufactured by single-point incremental forming (SPIF), the unawareness of the spatially resolved influence of the forming mechanisms on the residual stress states of incrementally formed sheet metal parts impedes their application-optimized use. In this study, a well-founded experimental proof of the occurring forming mechanisms shear, bending and stretching is presented using spatially resolved, high-energy synchrotron x-ray diffraction-based texture analysis in transmission mode. The measuring method allows even near-surface areas to be examined without any impairment of microstructural influences due to tribological reactions. The depth-resolved texture evolution for different sets of forming parameters offers insights into the forming mechanisms acting in SPIF. Therefore, the forming mechanisms are triggered explicitly by adjusting the vertical step-down increment Δz for groove, plate and truncated cone geometries. The texture analysis reveals that the process parameters and the specimen geometries used lead to characteristic changes in the crystallites’ orientation distribution in the formed parts due to plastic deformation. These forming-induced reorientations of the crystallites could be assigned to the forming mechanisms by means of defined reference states. It was found that for groove, plate and truncated cone geometries, a decreasing magnitude of step-down increments leads to a more pronounced shear deformation, which causes an increasing work hardening especially at the tool contact area of the formed parts. Larger step-down increments, on the other hand, induce a greater bending deformation. The plastic deformation by bending leads to a complex stress field that involves alternating residual tensile stresses on the tool and residual compressive stresses on the tool-averted side incrementally formed sheets. The present study demonstrates the potential of high-energy synchrotron x-ray diffraction for the spatially resolved forming mechanism research in SPIF. Controlling the residual stress states by optimizing the process parameters necessitates knowledge of the fundamental forming mechanism action.


2004 ◽  
Vol 37 (6) ◽  
pp. 967-976 ◽  
Author(s):  
Andrew C. Jupe ◽  
Stuart R. Stock ◽  
Peter L. Lee ◽  
Nikhila N. Naik ◽  
Kimberly E. Kurtis ◽  
...  

Spatially resolved energy dispersive X-ray diffraction, using high-energy synchrotron radiation (∼35–80 keV), was used nondestructively to obtain phase composition profiles along the radii of cylindrical cement paste samples to characterize the progress of the chemical changes associated with sulfate attack on the cement. Phase distributions were acquired to depths of ∼4 mm below the specimen surface with sufficient spatial resolution to discern features less than 200 µm thick. The experimental and data analysis methods employed to obtain quantitative composition profiles are described. The spatial resolution that could be achieved is illustrated using data obtained from copper cylinders with a thin zinc coating. The measurements demonstrate that this approach is useful for nondestructively visualizing the sometimes complex transformations that take place during sulfate attack on cement-based materials. These transformations can be spatially related to microstructure as seen by computed microtomography.


2017 ◽  
Vol 50 (4) ◽  
pp. 1000-1010
Author(s):  
Bärbel Krause ◽  
Michael Stüber ◽  
Anna Zimina ◽  
Ralph Steininger ◽  
Mareike Trappen ◽  
...  

Cr–Al–N coatings with a lateral composition gradient were deposited from two segmented Cr/Al targets with different segment size, thus covering the Al content range 0.22 ≲ c ≲ 0.87 and a thickness range from several hundred nanometres to several micrometres. The two-dimensional thickness and composition profiles were determined nondestructively from X-ray fluorescence maps. The results were reproduced by simulations of the flux distribution on the sample surface, combiningTRIDYNsimulations of the reactive sputter process at the target surface andSIMTRAsimulations of the subsequent transport through the gas phase. The phase formation was studied by spatially resolved X-ray diffraction and X-ray absorption spectroscopy at the Cr Kedge. Forc ≲ 0.69, a single-phase solid solution face-centered cubic (f.c.c.) (Cr,Al)N phase was found, and for 0.69 ≲ c ≲ 0.87 coexisting f.c.c. (Cr,Al)N and hexagonal close packed (h.c.p.) (Cr,Al)N phases were observed. The biaxial texture formation in nearly the entire composition range indicates a zone T growth. Four, mainly composition-dependent, texture regions were identified. All observed textures are closely related to textures reported for the h.c.p. AlN and f.c.c. CrN parent phases. Forc ≳ 0.69, a strong thickness dependence of the textures was observed. The measurements reveal an orientation relation between different f.c.c. and h.c.p. textures, indicating that local epitaxy might play a role in the structure formation.


2003 ◽  
Vol 18 (2) ◽  
pp. 181-181
Author(s):  
A. P. Wilkinson ◽  
A. C. Jupe ◽  
K. E. Kurtis ◽  
N. N. Naik ◽  
S. D. Shastri ◽  
...  

1996 ◽  
Vol 176 ◽  
pp. 469-476 ◽  
Author(s):  
M. Siarkowski

The Sun is the only star whose X-ray emitting, strongly inhomogenous corona can be spatially resolved via direct observations. For other late type-stars it is known that coronae do exist, but the spatial distribution of their emission is largely unknown. However in the case of eclipsing binaries this spatial structure can be potentially deduced from the orbital modulation of the observed X-ray light curve. The best candidates for this kind of analysis are RS CVn binaries, the most active and luminous late-type X-ray coronal sources. These are detached binaries with periods typically between 0.5 and 20 days, in which one or both stars have evolved into subgiant or giant of spectral type G or K. For short orbital periods (< 14 days) the tidal forces lead to synchronization of the orbital and rotational periods, so these systems rotate rigidly.


Sign in / Sign up

Export Citation Format

Share Document