Near-Surface Microstructure on Twin-Roll Cast 8906 Aluminum Alloy

2015 ◽  
Vol 46 (6) ◽  
pp. 2688-2695 ◽  
Author(s):  
Junjie Wang ◽  
Xiaorong Zhou ◽  
George E. Thompson ◽  
John A. Hunter ◽  
Yudie Yuan
2019 ◽  
Vol 805 ◽  
pp. 37-42
Author(s):  
Toshio Haga ◽  
Yhuta Nakazawa

A small projection with a height and width of about 40 and 50 µm, respectively, was formed on a twin-roll-cast A356 aluminum alloy sheet by cold rolling at a rolling speed of 0.5 m/min. This projection was then used as a die to form a groove with a depth and width of about 40 and 50 µm, respectively, on a polyethylene terephthalate plate by pressing.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1713 ◽  
Author(s):  
Yong Li ◽  
Chen He ◽  
Jiadong Li ◽  
Zhaodong Wang ◽  
Di Wu ◽  
...  

The main purpose of this present study was to investigate the different processing conditions on the microstructure, segregation behavior of alloying elements, and mechanical properties of Al−Mg−Si alloy twin-roll cast slab prepared using a novel twin-roll casting technology. The simulation of temperature field, distribution of alloying elements, tensile properties, hardness, and conductivity were examined by a Leica optical microscope, scanning electron microscopy, energy dispersion spectroscopy, electron probe microanalysis, and tensile tests. The results indicated that when the traditional twin-roll casting method was used to produce aluminum alloy strip, there are obvious centerline segregation defects due to the deep crystallization front depth and symmetrical solidification characteristics. When the forced-cooling technology was applied in the twin-roll casting process, by virtue of the changing of crystallization front depth and crystallization front shape, the segregation defects are obviously suppressed. Suggesting that this method can significantly improve the uniformity of alloying elements in the thickness direction of the twin-roll cast slab, ultimately improve the mechanical properties of AA6022 aluminum alloy.


2016 ◽  
Vol 47 (8) ◽  
pp. 4268-4275 ◽  
Author(s):  
Junjie Wang ◽  
Xiaorong Zhou ◽  
George E. Thompson ◽  
John A. Hunter ◽  
Yudie Yuan

JOM ◽  
1982 ◽  
Vol 34 (6) ◽  
pp. 70-75 ◽  
Author(s):  
Iljoon Jin ◽  
Larry R. Morris ◽  
J. D. Hunt

2010 ◽  
Vol 51 (10) ◽  
pp. 1854-1860 ◽  
Author(s):  
Min-Seok Kim ◽  
Yoshiyuki Arai ◽  
Yasuharu Hori ◽  
Shinji Kumai

2016 ◽  
Vol 877 ◽  
pp. 56-61 ◽  
Author(s):  
Shinji Kumai ◽  
Yusuke Takayama ◽  
Ryoji Nakamura ◽  
Daisuke Shimosaka ◽  
Yohei Harada ◽  
...  

A horizontal-type twin roll casting method has been popular for producing aluminum alloy strips, however, it is characterized by a relatively low productivity (1~6 m/min). In contrast, a vertical-type high-speed twin-roll casting method possesses an extremely high productivity (60~120 m/min (1~2 m/s)) and an excellent heat extraction ability. The rapid cooling effect provided significant microstructure refinement and mechanical properties improvement in various kinds of cast aluminum alloy products. Not only “product to product recycling” but also “up-grade recycling” can be achieved by making good use of these merits. Two examples of application showing the potential of vertical-type high-speed twin roll casting method are presented. (1) Several kinds of Al-Si base alloy were cast into the strips. Not only strength and toughness but also formability was increased in the twin roll cast products. In particular, great improvement in deformability shows the potential of the twin-roll cast aluminum alloy products as substitutes for some wrought aluminum alloy products. (2) The vertical-type tandem twin-roll caster was able to fabricate a clad strip by single step. The A4045/A3003/A4045 aluminum alloy clad sheets produced by the twin-roll casting showed better mechanical properties than the conventional hot-roll bonded clad sheets.


Sign in / Sign up

Export Citation Format

Share Document