Modeling of porosity during spray forming: Part II. Effects of atomization gas chemistry and alloy compositions

1998 ◽  
Vol 29 (5) ◽  
pp. 1097-1106 ◽  
Author(s):  
Weidong Cai ◽  
Enrique J. Lavernia
Keyword(s):  
Alloy Digest ◽  
2007 ◽  
Vol 56 (7) ◽  

Abstract Wieland-BB5 is a lead-free phosphor bronze with good working properties. The alloy can be produced by spray forming. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: CU-749. Producer or source: Wieland Metals Inc.


Alloy Digest ◽  
1984 ◽  
Vol 33 (1) ◽  

Abstract INDALLOY 160-190 is a bismth-base low-melting alloy that melts through th temperature range 160-190 F. It shrinks immediately upon solidification, grows back to zero in about one hour and then shows additional growth. This shrinkage-growth behavior makes it an ideal alloy for proof casting and precision measurement of internal dimensions. This alloy originally was developed for use by children for casting soldiers and other small objects. It performs best among the low-melting alloys for spraying in the spray forming of masks and molds and in metallizing. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on casting, heat treating, machining, and joining. Filing Code: Bi-34. Producer or source: Indium Corporation of America.


2013 ◽  
Vol 49 (11) ◽  
pp. 1399 ◽  
Author(s):  
Yi XU ◽  
Peng HUANG ◽  
Qin SHU ◽  
Biao GUO ◽  
Chuanshui SUN
Keyword(s):  

Author(s):  
Jun Chen ◽  
Wan‐Qing Xue ◽  
Chang‐Ming Xu ◽  
Pai‐Feng Luo ◽  
Ji‐Gui Cheng ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benjamin Gaston ◽  
Santhosh M. Baby ◽  
Walter J. May ◽  
Alex P. Young ◽  
Alan Grossfield ◽  
...  

AbstractWe have identified thiolesters that reverse the negative effects of opioids on breathing without compromising antinociception. Here we report the effects of d-cystine diethyl ester (d-cystine diEE) or d-cystine dimethyl ester (d-cystine diME) on morphine-induced changes in ventilation, arterial-blood gas chemistry, A-a gradient (index of gas-exchange in the lungs) and antinociception in freely moving rats. Injection of morphine (10 mg/kg, IV) elicited negative effects on breathing (e.g., depression of tidal volume, minute ventilation, peak inspiratory flow, and inspiratory drive). Subsequent injection of d-cystine diEE (500 μmol/kg, IV) elicited an immediate and sustained reversal of these effects of morphine. Injection of morphine (10 mg/kg, IV) also elicited pronounced decreases in arterial blood pH, pO2 and sO2 accompanied by pronounced increases in pCO2 (all indicative of a decrease in ventilatory drive) and A-a gradient (mismatch in ventilation-perfusion in the lungs). These effects of morphine were reversed in an immediate and sustained fashion by d-cystine diME (500 μmol/kg, IV). Finally, the duration of morphine (5 and 10 mg/kg, IV) antinociception was augmented by d-cystine diEE. d-cystine diEE and d-cystine diME may be clinically useful agents that can effectively reverse the negative effects of morphine on breathing and gas-exchange in the lungs while promoting antinociception. Our study suggests that the d-cystine thiolesters are able to differentially modulate the intracellular signaling cascades that mediate morphine-induced ventilatory depression as opposed to those that mediate morphine-induced antinociception and sedation.


Sign in / Sign up

Export Citation Format

Share Document