gas chemistry
Recently Published Documents


TOTAL DOCUMENTS

206
(FIVE YEARS 28)

H-INDEX

29
(FIVE YEARS 3)

2021 ◽  
Vol 14 (33) ◽  
pp. e16267
Author(s):  
Olga L. Shepelyuk

This study aims to investigate the problem of organizing practical classes in the disciplines of the natural science cycle at the oil and gas university. One of the unsolved issues is the problem of improving the content of the methodological preparation for conducting the course "Oil and Gas Chemistry" in higher education. It is reported that the logic of delivering the lectures and classes should correspond to the logic of students' assimilation of the subject matter, the formation of skills and abilities, motivation and stimulation of learning, and other components of the pedagogical process. It is spoken in detail about the theoretical prerequisites for developing a methodology for organizing a lesson in teaching the discipline "Oil and Gas Chemistry" on the basis of psychological and pedagogical laws of the algorithmic scheme for constructing a classical lesson in the natural science cycle. The quality assessment of the methodology of structuring the practical lesson proposed by the author was carried out according to the average value of the coefficients Kt or Kp; there was a significant increase, which indicates the effectiveness of the methodology proposed by the author.


2021 ◽  
pp. 549-552
Author(s):  
Hiroshi Shigeno ◽  
Masaaki Takahashi ◽  
Tetsuro Noda ◽  
Isao Matsunaga
Keyword(s):  

2021 ◽  
Vol 21 (10) ◽  
pp. 7983-8002
Author(s):  
Maria A. Zawadowicz ◽  
Kaitlyn Suski ◽  
Jiumeng Liu ◽  
Mikhail Pekour ◽  
Jerome Fast ◽  
...  

Abstract. The Aerosol and Cloud Experiment in the Eastern North Atlantic (ACE-ENA) investigated properties of aerosols and subtropical marine boundary layer (MBL) clouds. Low subtropical marine clouds can have a large effect on Earth's radiative budget, but they are poorly represented in global climate models. In order to understand their radiative effects, it is imperative to understand the composition and sources of the MBL cloud condensation nuclei (CCN). The campaign consisted of two intensive operation periods (IOPs) (June–July 2017 and January–February 2018) during which an instrumented G-1 aircraft was deployed from Lajes Field on Terceira Island in the Azores, Portugal. The G-1 conducted research flights in the vicinity of the Atmospheric Radiation Measurement (ARM) Eastern North Atlantic (ENA) atmospheric observatory on Graciosa Island. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and Ionicon proton-transfer-reaction mass spectrometer (PTR-MS) were deployed aboard the aircraft, characterizing chemistry of non-refractory aerosol and trace gases, respectively. The eastern North Atlantic region was found to be very clean, with an average non-refractory submicrometer aerosol mass loading of 0.6 µg m−3 in the summer and 0.1 µg m−3 in the winter, measured by the AMS. Average concentrations of the trace reactive gases methanol and acetone were 1–2 ppb; benzene, toluene and isoprene were even lower, <1 ppb. Mass fractions of sulfate, organics, ammonium and nitrate in the boundary layer were 69 %, 23 %, 7 % and 1 % and remained largely similar between seasons. The aerosol chemical composition was dominated by sulfate and highly processed organics. Particulate methanesulfonic acid (MSA), a well-known secondary biogenic marine species, was detected, with an average boundary layer concentration of 0.021 µg m−3, along with its gas-phase precursor, dimethyl sulfide (DMS). MSA accounted for no more than 3 % of the submicron, non-refractory aerosol in the boundary layer. Examination of vertical profiles of aerosol and gas chemistry during ACE-ENA reveals an interplay of local marine emissions and long-range-transported aged aerosol. A case of transport of biomass burning emissions from North American fires has been identified using back-trajectory analysis. In the summer, the non-refractory portion of the background CCN budget was heavily influenced by aerosol associated with ocean productivity, in particular sulfate formed from DMS oxidation. Episodic transport from the continents, particularly of biomass burning aerosol, periodically increased CCN concentrations in the free troposphere. In the winter, with ocean productivity lower, CCN concentrations were overall much lower and dominated by remote transport. These results show that anthropogenic emissions perturb CCN concentrations in remote regions that are sensitive to changes in CCN number and illustrate that accurate predictions of both transport and regional aerosol formation from the oceans are critical to accurately modeling clouds in these regions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benjamin Gaston ◽  
Santhosh M. Baby ◽  
Walter J. May ◽  
Alex P. Young ◽  
Alan Grossfield ◽  
...  

AbstractWe have identified thiolesters that reverse the negative effects of opioids on breathing without compromising antinociception. Here we report the effects of d-cystine diethyl ester (d-cystine diEE) or d-cystine dimethyl ester (d-cystine diME) on morphine-induced changes in ventilation, arterial-blood gas chemistry, A-a gradient (index of gas-exchange in the lungs) and antinociception in freely moving rats. Injection of morphine (10 mg/kg, IV) elicited negative effects on breathing (e.g., depression of tidal volume, minute ventilation, peak inspiratory flow, and inspiratory drive). Subsequent injection of d-cystine diEE (500 μmol/kg, IV) elicited an immediate and sustained reversal of these effects of morphine. Injection of morphine (10 mg/kg, IV) also elicited pronounced decreases in arterial blood pH, pO2 and sO2 accompanied by pronounced increases in pCO2 (all indicative of a decrease in ventilatory drive) and A-a gradient (mismatch in ventilation-perfusion in the lungs). These effects of morphine were reversed in an immediate and sustained fashion by d-cystine diME (500 μmol/kg, IV). Finally, the duration of morphine (5 and 10 mg/kg, IV) antinociception was augmented by d-cystine diEE. d-cystine diEE and d-cystine diME may be clinically useful agents that can effectively reverse the negative effects of morphine on breathing and gas-exchange in the lungs while promoting antinociception. Our study suggests that the d-cystine thiolesters are able to differentially modulate the intracellular signaling cascades that mediate morphine-induced ventilatory depression as opposed to those that mediate morphine-induced antinociception and sedation.


2021 ◽  
Vol 11 (2) ◽  
pp. 174-186
Author(s):  
V. A. Kryukov ◽  
V. V. Shmat
Keyword(s):  

2021 ◽  
Author(s):  
Ben Gaston ◽  
Santhosh M. Baby ◽  
Walter J. May ◽  
Alex P. Young ◽  
Alan Grossfield ◽  
...  

Abstract We have identified thiolesters that reverse the negative effects of opioids on breathing without compromising analgesia. Here we report the effects of D-cystine diethyl ester (D-cystine diEE) or D-cystine dimethyl ester (D-cystine diME) on morphine-induced changes in ventilation, arterial-blood gas chemistry, A-a gradient (index of gas-exchange in the lungs) and analgesia in freely moving rats. Injection of morphine (10 mg/kg, IV) elicited negative effects on breathing (e.g., depression of tidal volume, minute ventilation, peak inspiratory flow, and inspiratory drive). Subsequent injection of D-cystine diEE (500 mmol/kg, IV) elicited an immediate and sustained reversal of these effects of morphine. Injection of morphine (10 mg/kg, IV) also elicited pronounced decreases in arterial blood pH, pO2 and sO2 accompanied by pronounced increases in pCO2 (all indicative of a decrease in ventilatory drive) and A-a gradient (mismatch in ventilation-perfusion in the lungs). These effects of morphine were reversed in an immediate and sustained fashion by D-cystine diME (500 mmol/kg, IV). Finally, the duration of morphine (5 and 10 mg/kg, IV) analgesia was augmented by D-cystine diEE. D-cystine diEE and D-cystine diME may be clinically useful agents that can effectively reverse the negative effects of morphine on breathing and gas-exchange in the lungs while promoting analgesia.


Author(s):  
V. Parmon ◽  
Y. Aristovich ◽  
A. Breshev ◽  
A. Vlasov ◽  
G. Oganesyan ◽  
...  
Keyword(s):  

Author(s):  
I. A. Golubeva ◽  
◽  
M. V. Kryuchkov ◽  

The article considers the level of development of the petrochemical industry in Russia, the range of products, and the volume of its production. Petrochemical product range manufactured by various oil, gas and petrochemical companies in Russia is described. The analysis of problems in the Russian petrochemical industry, a comparison of its range and production volumes with indicators of developed countries is carried out. The prospects for the development of petrochemical chemistry in Russia were discussed.


Sign in / Sign up

Export Citation Format

Share Document