Improvement of the Thermoelectric Figure-of-Merit of a Doped Telluride Nanocomposite by Combining Phonon Scattering with Grain Boundary-Modifying Zn-Containing Nanostructures

2014 ◽  
Vol 44 (1) ◽  
pp. 425-430 ◽  
Author(s):  
Michael P. Rowe ◽  
Li Qin Zhou ◽  
Debasish Banerjee ◽  
Minjuan Zhang
2019 ◽  
Vol 34 (02) ◽  
pp. 2050019 ◽  
Author(s):  
Y. Zhang ◽  
M. M. Fan ◽  
C. C. Ruan ◽  
Y. W. Zhang ◽  
X.-J. Li ◽  
...  

[Formula: see text] ceramic samples have a structure similar to phonon glass electronic crystals, and their thermoelectric properties can be effectively adjusted through repeated grinding and sintering. The results show that multi-sintering can make their grain refined and increase their grain boundary, which will effectively increase density and phonon scattering. Finally, multi-sintering can reduce the resistivity and thermal conductivity, thus obviously improve thermoelectric figure of merit [Formula: see text] of [Formula: see text]. The optimum [Formula: see text] value of 0.26 is achieved at 923 K by the third sintered sample.


2020 ◽  
Vol 8 (17) ◽  
pp. 8455-8461 ◽  
Author(s):  
Yehao Wu ◽  
Feng Liu ◽  
Qi Zhang ◽  
Tiejun Zhu ◽  
Kaiyang Xia ◽  
...  

Suppressed grain boundary scattering contributes to enhanced electrical conductivity and device zT in elemental Te based thermoelectric materials.


2011 ◽  
Vol 110 (7) ◽  
pp. 074317 ◽  
Author(s):  
Julio A. Martinez ◽  
Paula P. Provencio ◽  
S. T. Picraux ◽  
John P. Sullivan ◽  
B. S. Swartzentruber

2018 ◽  
Vol 913 ◽  
pp. 811-817 ◽  
Author(s):  
Di Wu ◽  
Ji Ai Ning ◽  
De Gang Zhao ◽  
Xue Zhen Wang ◽  
Na Liu

In this study, nanometer WO3 powder was uniformly dispersed into the Cu2SnSe3 powder by ball milling process, and the WO3/Cu2SnSe3 thermoelectric composite was prepared by spark plasma sintering (SPS). The results showed that the nano-WO3 particles were mainly distributed in the grain boundary of Cu2SnSe3 matrix, and the grain growth of Cu2SnSe3 was inhibited. The addition of nano-WO3 could enhance the electrical conductivity of Cu2SnSe3, and while the Seebeck coefficient increased slightly for the 0.4% WO3/Cu2SnSe3 composite. The thermal conductivity was not decreased until the content of WO3 exceeded 1.6%. The highest thermoelectric figure of merit ZT of 0.177 was achieved at 700 K for 0.4% WO3/Cu2SnSe3 composite. The enhancement of ZT value of WO3/Cu2SnSe3 thermoelectric material was mainly attributed to the improvement of the electrical properties.


1997 ◽  
Vol 478 ◽  
Author(s):  
T. L. Reinecke ◽  
D. A. Broido

AbstractThe thermoelectric transport properties of superlattices have been studied using an exact solution of the Boltzmann equation. The role of heat transport along the barrier layers, of carrier tunneling through the barriers, of valley degeneracy and of the well width and energy dependences of the carrier-phonon scattering rates on the thermoelectric figure of merit are given. Calculations are given for Bi2Te3 and for PbTe, and the results of recent experiments are discussed.


2009 ◽  
Vol 1166 ◽  
Author(s):  
Zhifeng Ren ◽  
Bed Poudel ◽  
Yi Ma ◽  
Yucheng Lan ◽  
Austin Minnich ◽  
...  

AbstractThe dimensionless thermoelectric figure-of-merit (ZT) in bulk materials has remained about 1 for many years. Here we show that a significant ZT improvement can be achieved in nanocrystalline bulk materials. These nanocrystalline bulk materials were made by hot-pressing nanopowders that are ball-milled from either crystalline ingots or elements. Electrical transport measurements, coupled with microstructure studies and modeling, show that the ZT improvement is the result of low thermal conductivity caused by the increased phonon scattering by grain boundaries and defects. More importantly, the nanostructure approach has been demonstrated in a few thermoelectric material systems, proving its generosity. The approach can be easily scaled up to multiple tons. Thermal stability studies have shown that the nanostructures are stable at the application temperature for an extended period of time. It is expected that such enhanced materials will make the existing cooling and power generation systems more efficient.


RSC Advances ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 3304-3314
Author(s):  
Enamul Haque ◽  
Mizanur Rahaman

Weak anharmonicity: the weak anharmonicity leads to weak phonon scattering in SrGaSnH. Thus, SrGaSnH intrinsically possesses a high lattice thermal conductivity (kl).. Such large κl dramatically reduces the thermoelectric figure of merit.


2006 ◽  
Vol 510-511 ◽  
pp. 1070-1073 ◽  
Author(s):  
Il Ho Kim ◽  
J.B. Park ◽  
Tae Whan Hong ◽  
Soon Chul Ur ◽  
Young Geun Lee ◽  
...  

Zn4Sb3 was successfully produced by a hot pressing technique, and its thermoelectric properties were investigated in the temperature range from 4K to 300K. The Seebeck coefficient, electrical conductivity, thermal conductivity, and thermoelectric figure of merit showed a discontinuity in variation at 242K, indicating the α-Zn4Sb3 to β-Zn4Sb3 phase transformation. Lattice thermal conductivity was found to be dominant in the total thermal conductivity of Zn4Sb3. Therefore, it is expected that thermoelectric properties can be improved by reducing the lattice thermal conductivity inducing phonon scattering centers.


Sign in / Sign up

Export Citation Format

Share Document