Synthesis and Thermoelectric Properties of WO3/Cu2SnSe3 Composites

2018 ◽  
Vol 913 ◽  
pp. 811-817 ◽  
Author(s):  
Di Wu ◽  
Ji Ai Ning ◽  
De Gang Zhao ◽  
Xue Zhen Wang ◽  
Na Liu

In this study, nanometer WO3 powder was uniformly dispersed into the Cu2SnSe3 powder by ball milling process, and the WO3/Cu2SnSe3 thermoelectric composite was prepared by spark plasma sintering (SPS). The results showed that the nano-WO3 particles were mainly distributed in the grain boundary of Cu2SnSe3 matrix, and the grain growth of Cu2SnSe3 was inhibited. The addition of nano-WO3 could enhance the electrical conductivity of Cu2SnSe3, and while the Seebeck coefficient increased slightly for the 0.4% WO3/Cu2SnSe3 composite. The thermal conductivity was not decreased until the content of WO3 exceeded 1.6%. The highest thermoelectric figure of merit ZT of 0.177 was achieved at 700 K for 0.4% WO3/Cu2SnSe3 composite. The enhancement of ZT value of WO3/Cu2SnSe3 thermoelectric material was mainly attributed to the improvement of the electrical properties.

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 643 ◽  
Author(s):  
Bhuvanesh Srinivasan ◽  
David Berthebaud ◽  
Takao Mori

As a workable substitute for toxic PbTe-based thermoelectrics, GeTe-based materials are emanating as reliable alternatives. To assess the suitability of LiI as a dopant in thermoelectric GeTe, a prelusive study of thermoelectric properties of GeTe1−xLiIx (x = 0–0.02) alloys processed by Spark Plasma Sintering (SPS) are presented in this short communication. A maximum thermoelectric figure of merit, zT ~ 1.2, was attained at 773 K for 2 mol% LiI-doped GeTe composition, thanks to the combined benefits of a noted reduction in the thermal conductivity and a marginally improved power factor. The scattering of heat carrying phonons due to the presumable formation of Li-induced “pseudo-vacancies” and nano-precipitates contributed to the conspicuous suppression of lattice thermal conductivity, and consequently boosted the zT of the Sb-free (GeTe)0.98(LiI)0.02 sample when compared to that of pristine GeTe and Sb-rich (GeTe)x(LiSbTe2)2 compounds that were reported earlier.


Author(s):  
А.А. Шабалдин ◽  
П.П. Константинов ◽  
Д.А. Курдюков ◽  
Л.Н. Лукьянова ◽  
А.Ю. Самунин ◽  
...  

AbstractNanocomposite thermoelectrics based on Bi_0.45Sb_1.55Te_2.985 solid solution of p -type conductivity are fabricated by the hot pressing of nanopowders of this solid solution with the addition of SiO_2 microparticles. Investigations of the thermoelectric properties show that the thermoelectric power of the nanocomposites increases in a wide temperature range of 80–420 K, while the thermal conductivity considerably decreases at 80–320 K, which, despite a decrease in the electrical conductivity, leads to an increase in the thermoelectric efficiency in the nanostructured material without the SiO_2 addition by almost 50% (at 300 K). When adding SiO_2, the efficiency decreases. The initial thermoelectric fabricated without nanostructuring, in which the maximal thermoelectric figure of merit ZT = 1 at 390 K, is most efficient at temperatures above 350 K.


Author(s):  
Ч.И. Абилов ◽  
М.Ш. Гасанова ◽  
Н.Т. Гусейнова ◽  
Э.К. Касумова

The results of studying the temperature dependences of electrical conductivity, thermoelectric coefficient, Hall mobility of charge carriers, total and electronic thermal conductivity, as well as phonon thermal resistance of alloys of (CuInSe2)1-x(In2Te3)x solid solutions at x=0.005 and 0.0075 are presented. The values ​​of these parameters for certain temperatures were used to calculate the values ​​of the thermoelectric figure of merit of the indicated compositions. It turned out that as the temperature rises, the thermoelectric figure of merit tends to grow strongly, from which it can be concluded that these materials can be used in the manufacture of thermoelements.


2020 ◽  
Vol 8 (17) ◽  
pp. 8455-8461 ◽  
Author(s):  
Yehao Wu ◽  
Feng Liu ◽  
Qi Zhang ◽  
Tiejun Zhu ◽  
Kaiyang Xia ◽  
...  

Suppressed grain boundary scattering contributes to enhanced electrical conductivity and device zT in elemental Te based thermoelectric materials.


2007 ◽  
Vol 336-338 ◽  
pp. 857-859
Author(s):  
Wen Bing Zhang ◽  
Li Dong Chen ◽  
Xiao Ya Li

Polycrystalline AgPb18+xSbTe20 compounds with different Pb contents (x=1-4) were prepared by melting method and spark plasma sintering techniques. The crystal structure and chemical composition were determined by XRD and EPMA. The thermal conductivity, electrical conductivity and Seebeck coefficient were measured in the temperature range of 300-800K. The dimensionless thermoelectric figure of merit (ZT) of AgPb18+xSbTe20 (x=1-4) increases in the whole temperature range of 300-750K which is different to the pure lead telluride compound. The maximum ZT value reaches 1.03 at 800K.


2012 ◽  
Vol 519 ◽  
pp. 188-192 ◽  
Author(s):  
P.Z. Ying ◽  
H. Zhou ◽  
Y.L. Gao ◽  
Y.Y. Li ◽  
Y.P. Li ◽  
...  

Here we report the thermoelectric properties of a wide–gap chalcopyrite compound AgInSe2, and observed the remarkable improvement in electrical conductivity σ, due to the bandgap (Eg = 1.12 eV) reduction compared to In2Se3. The improvement in σ is directly responsible for the enhancement of thermoelectric figure of merit ZT, though the thermal conductivity is much higher at 500 ~ 724 K. The maximum ZT value is 0.34 at 724 K, increasing by a factor of 4, indicating that this chalcopyrite compound is of a potential thermoelectric candidate if further optimizations of chemical compositions and structure are made.


2013 ◽  
Vol 1490 ◽  
pp. 57-62 ◽  
Author(s):  
Natsuko Mikami ◽  
Keishi Nishio ◽  
Koya Arai ◽  
Tatsuya Sakamoto ◽  
Masahiro Minowa ◽  
...  

ABSTRACTThe thermoelectrical properties of α and γ phases of NaxCo2O4 having different amounts of Na were evaluated. The γ NaxCo2O4 samples were synthesized by thermal decomposition in a metal-citric acid compound, and the α NaxCo2O4 samples were synthesized by self-flux processing. Dense bulk ceramics were fabricated using spark plasma sintering (SPS), and the sintered samples were of high density and highly oriented. The thermoelectrical properties showed that γ NaxCo2O4 had higher electrical conductivity and lower thermal conductivity compared with α NaxCo2O4 and that α NaxCo2O4 had a larger Seebeck coefficient. These results show that γ NaxCo2O4 has a larger power factor and dimensionless figure of merit, ZT, than α NaxCo2O4.


2020 ◽  
Author(s):  
Mikhail Vladimirovich Dorokhin ◽  
Polina Borisovna Demina ◽  
Irina Viktorovna Erofeeva ◽  
Yuri Mikhailovich Kuznetsov ◽  
Anton Vladimirovich Zdoroveyshchev ◽  
...  

Abstract Thermoelectric Si 0,65 Ge 0,35 Sb δ materials have been fabricated by spark plasma sintering of Ge-Si-Sb powder mixture. The electronic properties of Si 0,65 Ge 0,35 Sb δ were found to be dependent on the uniformity of mixing of the components, which in turn is determined by the maximum heating temperature during solid-state sintering. Provided the concentration of donor Sb impurity is optimized the thermoelectric figure of merit for the investigated structures can be as high as 0.628 at the temperature of 490 °С, the latter value is comparable with world-known analogues obtained for Si 1- x Ge x P δ .


Author(s):  
М.В. Дорохин ◽  
П.Б. Демина ◽  
И.В. Ерофеева ◽  
А.В. Здоровейщев ◽  
Ю.М. Кузнецов ◽  
...  

AbstractThe results of investigation of thermoelectric materials fabricated by spark plasma sintering and based on Si_1 –_ x Ge_ x solid solutions doped with Sb to a concentration of 0–5 at % are presented. It was found that, at Sb concentration below 1 at %, efficient doping of the solid solution was carried out during the sintering process, which allowed us to form a thermoelectric material with a relatively high thermoelectric figure of merit. An increase in the concentration of antimony in the range of 1–5 at % led to a change in the mechanism of doping, which resulted in an increase in the resistance of materials and the segregation of Sb into large clusters. For such materials, a significant decrease in the Seebeck coefficient and thermoelectric figure of merit was noted. The highest obtained thermoelectric figure of merit (ZT) with Sb doping was 0.32 at 350°C, which is comparable with known analogues for the Ge_ x Si_1 –_ x solid solution.


2016 ◽  
Vol 4 (9) ◽  
pp. 1871-1880 ◽  
Author(s):  
Gabin Guélou ◽  
Paz Vaqueiro ◽  
Jesús Prado-Gonjal ◽  
Tristan Barbier ◽  
Sylvie Hébert ◽  
...  

The thermoelectric figure of merit of TiS2 is increased by 25% through the intercalation of low levels of cobalt due to an increased electrical conductivity, arising from charge transfer, and a reduced thermal conductivity resulting from disorder.


Sign in / Sign up

Export Citation Format

Share Document