Evaporation Behavior of Phosphorus from Metallurgical Grade Silicon via Calcium-Based Slag Treatment and Hydrochloric Acid Leaching

2015 ◽  
Vol 45 (1) ◽  
pp. 541-552 ◽  
Author(s):  
Liuqing Huang ◽  
Huixian Lai ◽  
Chenghao Lu ◽  
Ming Fang ◽  
Wenhui Ma ◽  
...  
2013 ◽  
Vol 750 ◽  
pp. 284-287 ◽  
Author(s):  
Hiroaki Kawamura ◽  
Yutaka Yanaba ◽  
Takeshi Yoshikawa ◽  
Kazuki Morita

In order to verify an alternative metallurgical process of phosphorus removal for solar grade silicon (SOG-Si), slag treatment of metallurgical grade silicon (MG-Si) was conducted followed by acid leaching in the present study. MG-Si containing certain amount of phosphorus and calcium was equilibrated at 1723 and 1773 K with several compositions of the CaO-CaF2 slags and phosphorus in molten silicon was confirmed to be removed into slag phase also by reducing reaction as a form of phosphide ion, P3-, in addition to the phosphate ion, PO43-. These contents were separately determined by a wet chemical analysis method developed by ourselves. Although the distribution ratio of phosphorus could not exceed the highest reported values of 3, subsequent leaching brought about considerably high fraction of P removal. The removal fraction of 95.6% was attained when 5 g of silicon was treated with 10 g of the slag at 1773 K followed by the acid leaching, which would be much higher than that expected by the ordinary oxidizing slag treatment. Although the possibility of reducing dephosphorization by slag treatment was clarified, more effective condition should be pursued by changing slag composition, calcium content of silicon, temperature, etc.


2010 ◽  
Vol 73 (2) ◽  
pp. 173-178 ◽  
Author(s):  
Li Zhang ◽  
Huiping Hu ◽  
Liangping Wei ◽  
Qiyuan Chen ◽  
Jun Tan

2018 ◽  
Vol 115 (3) ◽  
pp. 312 ◽  
Author(s):  
Rowaid Al-khazraji ◽  
Yaqiong Li ◽  
Lifeng Zhang

Boron (B) removal by slag refining using CaO–SiO2–CaCl2 was investigated in metallurgical-grade silicon (MG-Si) and 75 wt% Si–Sn alloy. Experiments were conducted at 1500 °C for 15 min. The microstructure was characterized before and after refining. The effects of acid leaching, basicity, and slag/Si mass ratio on B removal were investigated. Experimental results showed that acid leaching had no effect on B removal from MG-Si but had a clear effect on the refined Si–Sn alloy after slag refining. The final B concentration was highly affected by the CaO/SiO2 mass ratio with minimum value, where the content of B was reduced from 18.36 ppmw to 5.5 ppmw at the CaO/SiO2 = 1.2 for MG-Si slag refining and from 18.36 ppmw to 3.7 ppmw at CaO/SiO2 = 1.5 for 75 wt% Si–Sn alloy. Increasing the slag mass ratio by 2:1 mass ratio also increased B removal efficiency by approximately 15–20% more than an increase by 1:1.


2017 ◽  
Vol 35 (12) ◽  
pp. 1255-1260 ◽  
Author(s):  
Genghong Shuai ◽  
Longsheng Zhao ◽  
Liangshi Wang ◽  
Zhiqi Long ◽  
Dali Cui

Silicon ◽  
2018 ◽  
Vol 11 (4) ◽  
pp. 1979-1987 ◽  
Author(s):  
Farzad Ebrahimfar ◽  
Mahdi Ahmadian

JOM ◽  
2012 ◽  
Vol 64 (8) ◽  
pp. 957-967 ◽  
Author(s):  
Yulia V. Meteleva-Fischer ◽  
Yongxiang Yang ◽  
Rob Boom ◽  
Bert Kraaijveld ◽  
Henk Kuntzel

Sign in / Sign up

Export Citation Format

Share Document