Density Functional Theory and Voltammetric Study of Niclosamide Adsorption Behavior On Carbon Nanotubes

Author(s):  
Masoumeh Ghalkhani ◽  
Roya Majidi ◽  
Mina Ghanbari
2011 ◽  
Vol 115 (10) ◽  
pp. 4235-4239 ◽  
Author(s):  
Xiaojun Wu ◽  
Rulong Zhou ◽  
Jinlong Yang ◽  
Xiao Cheng Zeng

2017 ◽  
Vol 19 (33) ◽  
pp. 22344-22354 ◽  
Author(s):  
Sajjad Ali ◽  
Tian Fu Liu ◽  
Zan Lian ◽  
Bo Li ◽  
Dang Sheng Su

The mechanism of CO oxidation by O2 on a single Au atom supported on pristine, mono atom vacancy (m), di atom vacancy (di) and the Stone Wales defect (SW) on single walled carbon nanotube (SWCNT) surface is systematically investigated theoretically using density functional theory.


RSC Advances ◽  
2015 ◽  
Vol 5 (118) ◽  
pp. 97724-97733 ◽  
Author(s):  
Alireza Najafi Chermahini ◽  
Abbas Teimouri ◽  
Hossein Farrokhpour

Density functional theory (DFT) was used to investigate the adsorption of lactic acid molecule on the surface of (4,4), (5,5), (6,6) and (7,7) single-walled carbon nanotubes (SWCNTs).


2012 ◽  
Vol 463-464 ◽  
pp. 1488-1492 ◽  
Author(s):  
Yan Li Wang ◽  
Ke He Su ◽  
Jun Ping Zhang

The B, N, S, Si and P atoms doped single walled (5, 5) carbon nanotubes were studied by density functional theory B3LYP/3-21G (d) with the periodic boundary conditions. The ultra long tube models were calculated and the structures, energies and the band structures were obtained. The N, Si and S doped nanotubes have narrow energy gap with metal conductivity whereas B and P doped nanotubes have overlapped energy gaps with or semi-metal conductivity.


2013 ◽  
Vol 683 ◽  
pp. 150-153
Author(s):  
Ni Ni Yuan ◽  
Hong Cun Bai ◽  
Yu Hua Wu ◽  
Jun Li ◽  
Yong Qiang Ji

The hybrid nanostructures made of single-walled carbon nanotubes substitutionally doped with silicon atoms were investigated by quantum chemistry calculations based on density functional theory in this paper. The zigzag (12, 0) tube was considered to construct the Si-doped tubes. The geometrical structures, relative stabilities and electronic properties of the doped tubes were studied in details and compared with those of the pristine nanotubes. It is found that the Si-doped nanotubes exhibit lower thermodynamic stability than those of the undoped tubes from viewpoint of cohesive energy. The energy levels of the frontier orbitals vary very little when the silicon atom is introduced into the nanotubes. However, most doped tubes present larger Eg than those of the pristine ones.


Sign in / Sign up

Export Citation Format

Share Document