Free-Standing Working Electrodes for Supercapacitors Based on Composite Polymer Nanofibers and Functionalized with Graphene Oxide

Author(s):  
Khaled S. Elmessiry ◽  
M. R. El-Aassar ◽  
A. B. A. A. Nassr ◽  
El-Refaie Kenawy ◽  
Baha Eddin Moharam ◽  
...  
Nanophotonics ◽  
2020 ◽  
Vol 9 (15) ◽  
pp. 4601-4608 ◽  
Author(s):  
Pengyu Zhuang ◽  
Hanyu Fu ◽  
Ning Xu ◽  
Bo Li ◽  
Jun Xu ◽  
...  

AbstractInterfacial solar vapor generation has revived the solar-thermal-based desalination due to its high conversion efficiency of solar energy. However, most solar evaporators reported so far suffer from severe salt-clogging problems during solar desalination, leading to performance degradation and structural instability. Here, we demonstrate a free-standing salt-rejecting reduced graphene oxide (rGO) membrane serving as an efficient, stable, and antisalt-fouling solar evaporator. The evaporation rate of the membrane reaches up to 1.27 kg m−2 h−1 (solar–thermal conversion efficiency ∼79%) under one sun, out of 3.5 wt% brine. More strikingly, due to the tailored narrow interlayer spacing, the rGO membrane can effectively reject ions, preventing salt accumulation even for high salinity brine (∼8 wt% concentration). With enabled salt-antifouling capability, flexibility, as well as stability, our rGO membrane serves as a promising solar evaporator for high salinity brine treatment.


2021 ◽  
Vol 118 (7) ◽  
pp. 071601
Author(s):  
Xiu-Yan Fu ◽  
Qing Cai ◽  
Jia-Nan Ma ◽  
Lin Zhu ◽  
Dong-Dong Han ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Fuwei Liu ◽  
Luoyuan Xie ◽  
Li Wang ◽  
Wei Chen ◽  
Wei Wei ◽  
...  

AbstractMany hybrid electrodes for supercapacitors (SCs) are a reckless combination without proper structural design that keeps them from fulfilling their potential. Herein, we design a reduced graphene oxide/poly(3,4-ethylenedioxythiophene)/polyaniline (RGO/PEDOT/PANI) hybrid with hierarchical and porous structure for high-performance SCs, where components fully harness their advantages, forming an interconnected and conductive framework with substantial reactive sites.Thus, this hybrid achieves a high capacitance of 535 F g−1 along with good rate capability and cyclability. The planar SC based on this hybrid deliver an energy density of 26.89 Wh kg−1 at a power density of 800 W kg−1. The linear SC developed via modifying a cotton yarn with the hybrid exhibits good flexibility and structural stability, which operates normally after arbitrary deformations. This work provides a beneficial reference for developing SCs.


Nature Energy ◽  
2021 ◽  
Author(s):  
Hao Chen ◽  
Yufei Yang ◽  
David T. Boyle ◽  
You Kyeong Jeong ◽  
Rong Xu ◽  
...  

Carbon ◽  
2017 ◽  
Vol 115 ◽  
pp. 561-570 ◽  
Author(s):  
Hua Yang ◽  
Yang Cao ◽  
Junhui He ◽  
Yue Zhang ◽  
Binbin Jin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document