Improving the Deformation Uniformity and Minimizing the Inner Surface Roughness in Rectangular Tube Drawing Process

2012 ◽  
Vol 22 (4) ◽  
pp. 974-982 ◽  
Author(s):  
Wu-Jiao Xu ◽  
Kai-Qing Wang ◽  
Ming-Ping Zou ◽  
Peng-Cheng Wang
2020 ◽  
Vol 994 ◽  
pp. 70-77 ◽  
Author(s):  
Augustín Görög ◽  
Ingrid Görögová ◽  
Maroš Martinkovič

The manufacture of tubes by a fixed mandrel drawing is one of the technologies in the manufacture of seamless tubes. This is the oldest tube drawing method. It uses a mandrel at the end of the die to shape the internal diameter of the tube. This process is slow and the area reductions are limited (lengths of tubes are limited), but it gives the best inner surface finish of any of the processes. The use of a fixed mandrel by the drawing of small-diameter tubes makes it possible to increase the accuracy of the inner surface and improve the quality. The paper presents the results of solving a partial task in this area. It deals with the reconstruction of the microgeometry of the inner surface of a tube drawn by a fixed mandrel. Tubes (STN 41 1353) were drawn through dies with different reduction angles. There were grounds the straight and spiral grooves on used fixed mandrels. On the inner surface of the tube were formed grooves after drawn that had a different surface roughness compared to the mandrel surface. The paper graphically presents the morphology of obtained surfaces under various conditions (reduction angles, straight/spiral grooves on the fixed mandrel) as well as measured surface roughness values. At the end of the paper, the knowledge gained through experimental research are summarized.


2014 ◽  
Vol 23 (5) ◽  
pp. 055202 ◽  
Author(s):  
Huan Wang ◽  
Li-Hua Cao ◽  
Zong-Qing Zhao ◽  
Ming-Yang Yu ◽  
Yu-Qiu Gu ◽  
...  

2020 ◽  
Vol 29 (11) ◽  
pp. 7736-7743
Author(s):  
Andrij Milenin ◽  
Tsuyoshi Furushima ◽  
Jiří Němeček

AbstractThe paper investigates the transformation of surface roughness of tubes made from magnesium and magnesium alloys as a function of their longitudinal strain during laser dieless drawing. Experimental studies on three materials (AZ31, MgCa08, and pure Mg) have shown that the dependence of roughness on the longitudinal strain is nonlinear and exhibits a minimum. The proposed explanation for this is that the transformation of surface roughness occurs following two mechanisms. The first mechanism involves stretching of the tube and the decreasing of existing roughness with the increasing elongation. The second mechanism is based on the strain-induced surface roughening phenomenon. This mechanism leads to an increase in roughness with the increasing elongation. To analyze these mechanisms, a numerical model of roughness formation is used. It is experimentally shown that the position of the minimum roughness concerning the tube longitudinal strain is correlated with the stress-strain curve of the material under laser dieless drawing conditions. The obtained results provide a practical way to reduce surface roughness of tubes produced by the laser dieless drawing process. According to the proposed method, to achieve minimum roughness, it is necessary to keep the longitudinal strain under a specific value. This value is close to the strain, which corresponds to the maximum stress on the stress-strain curve of the material for temperature and strain rate, corresponding laser dieless drawing conditions.


2018 ◽  
Vol 53 (5) ◽  
pp. 364-375
Author(s):  
Florian Vollert ◽  
Marco Lüchinger ◽  
Simone Schuster ◽  
Nicola Simon ◽  
Jens Gibmeier ◽  
...  

Lightweight constructions are used to fulfil the ever-increasing demands regarding fuel efficiency and carbon dioxide emission in transportation industries. In order to reduce weight, technical components made of solid materials are often replaced by tubular structures. Under service conditions, the components are frequently exposed to cyclic loads. Hence, residual stresses that are induced by manufacturing processes can have a significant impact on service life. In this work, the focus is on tube manufacturing processes, precisely cold tube sinking and fixed plug drawing. Both processes induce characteristic residual stress states, which are important to assess the mechanical integrity and load-carrying capacity of tubular components during service. The aim of this article is to examine the residual stress depth distribution for medium-carbon steel tubes manufactured by cold tube sinking and fixed plug drawing. The residual stresses are measured by means of the Sachs method and the hole-drilling method, respectively. The measured results are compared to finite element simulations of the tube drawing process. It is shown that the residual stress obtained with the different experimental methods and the numerical simulations are consistent. Furthermore, it is shown that the residual stresses can be significantly reduced when a plug is used in the drawing process.


Sign in / Sign up

Export Citation Format

Share Document