Effects of Chromate and Non-Chromate Coating Systems on Environmentally Assisted Fatigue of an Aluminum Alloy

2014 ◽  
Vol 23 (10) ◽  
pp. 3534-3540 ◽  
Author(s):  
Joel J. Schubbe ◽  
Sophoria N. Westmoreland
2019 ◽  
Vol 66 (6) ◽  
pp. 879-887 ◽  
Author(s):  
Yong Zhou ◽  
Pei Zhang ◽  
Jinping Xiong ◽  
Fuan Yan

Purpose A chromate conversion coating was prepared on the surface of bare AA2024 aluminum alloy by direct immersion in the chromating treatment bath, and the corrosion behavior of chromated AA2024 aluminum alloy in 3.5 per cent NaCl solution was studied by electrochemical measurement and microstructural observation. Design/methodology/approach According to the polarization curve test and the scanning electron microscope observation, the corrosion evolution of chromated AA2024 in 3.5 per cent NaCl solution was divided into the following three stages: coating failure, pitting corrosion and intergranular corrosion (IGC). Findings In the first stage, the chromate coating degraded gradually due to the combined action of chloride anions and water molecules, resulting in the complete exposure of AA2024 substrate to 3.5 per cent NaCl solution. Subsequently, in the second stage, chloride anions adsorbed at the sites of θ phase (Al2Cu) and S phase (Al2CuMg) on the AA2024 surface preferentially, and some corrosion pits initiated at the above two sites and propagated towards the deep of crystal grains. However, the propagation of a pit terminated when the pit front arrived at the adjacent grain boundary, where the initiation of IGC occurred. Originality/value Finally, in the third stage, the corrosion proceeded along the continuous grain boundary net and penetrated the internal of AA2024 substrate, resulting in the propagation of IGC. The related corrosion mechanisms for the bare and the chromated AA2024 were also discussed.


Author(s):  
G. G. Shaw

The morphology and composition of the fiber-matrix interface can best be studied by transmission electron microscopy and electron diffraction. For some composites satisfactory samples can be prepared by electropolishing. For others such as aluminum alloy-boron composites ion erosion is necessary.When one wishes to examine a specimen with the electron beam perpendicular to the fiber, preparation is as follows: A 1/8 in. disk is cut from the sample with a cylindrical tool by spark machining. Thin slices, 5 mils thick, containing one row of fibers, are then, spark-machined from the disk. After spark machining, the slice is carefully polished with diamond paste until the row of fibers is exposed on each side, as shown in Figure 1.In the case where examination is desired with the electron beam parallel to the fiber, preparation is as follows: Experimental composites are usually 50 mils or less in thickness so an auxiliary holder is necessary during ion milling and for easy transfer to the electron microscope. This holder is pure aluminum sheet, 3 mils thick.


2015 ◽  
Vol 30 (6) ◽  
pp. 627
Author(s):  
YE Zuo-Yan ◽  
LIU Dao-Xin ◽  
LI Chong-Yang ◽  
ZHANG Xiao-Hua ◽  
ZANG Xiao-Ming ◽  
...  

Equipment ◽  
2006 ◽  
Author(s):  
S. R. Carvalho ◽  
S. M. M. Lima e Silva ◽  
G. Guimaraes

1999 ◽  
Author(s):  
P. H. Chong ◽  
H. C. Man ◽  
S. F. Chan
Keyword(s):  

2008 ◽  
Author(s):  
Naoyuki Matsumoto ◽  
Yousuke Kawahito ◽  
Masami Mizutani ◽  
Seiji Katayama

Sign in / Sign up

Export Citation Format

Share Document