THERMAL ANALYSIS USING INVERSE TECHNIQUE APPLIED TO AN ALUMINUM ALLOY GTAW

Equipment ◽  
2006 ◽  
Author(s):  
S. R. Carvalho ◽  
S. M. M. Lima e Silva ◽  
G. Guimaraes
Author(s):  
Elisan dos Santos Magalhaes ◽  
Cristiano Pedro da Silva ◽  
Ana Lúcia Fernandes Lima e Silva ◽  
Sandro Metrevelle Marcondes Lima e Silva

Purpose The purpose of this article is the determination of the temperature fields in a weld region has always been an obstacle to the improvement of welding processes. As an alternative, the use of inverse problems to determine the heat flux during the welding process allows an analysis of these processes. Design/methodology/approach This paper studies an alternative for the thermal analysis of the tungsten inert gas welding process on a 6,060 T5 aluminum alloy. For this purpose, a C++ code was developed, based on a transient three-dimensional heat transfer model. To estimate the amount of heat delivered to the plate, the specification function technique was used. Lab experiments were carried out to validate the methodology. A different experimental methodology is proposed to estimate the emissivity (radiation coefficient). Findings The maximum difference between experimental and numerical temperatures is lower than 5 per cent. The determined emissivity value for the aluminum 6,060 T5 presented a good agreement with literature values. The thermal fields were analyzed as function of the positive polarity. The specification function method proved to be an adequate tool for heat input estimation in welding analysis. Originality/value The proposed methodology proves to be a cheaper way to estimate the heat flux on the sample. The estimated power curves for the welding process are presented. The methodology to calculate the emissivity (radiation coefficient) was validated.


2006 ◽  
Vol 428 (1-2) ◽  
pp. 41-46 ◽  
Author(s):  
A. Mitrasinovic ◽  
F.C. Robles Hernández ◽  
M. Djurdjevic ◽  
J.H. Sokolowski

2010 ◽  
Vol 51 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Najmeddin Arab ◽  
Ernest Nazaryan ◽  
Safdar Habibi

2015 ◽  
Vol 764-765 ◽  
pp. 369-373
Author(s):  
Wei Hsin Gau ◽  
Kun Nan Chen ◽  
Chin Yuan Hung

The brakes of an automobile are among the most critical components regarding the safety features, and disc brakes are the most common type used in passenger vehicles. In this research, the squeal phenomena of a swirl-vent brake rotor and the thermal analysis of two straight-vent brake rotors, made of cast-iron and aluminum-alloy, are investigated. For the squeal analysis, finite element models are created and analyzed using a prestressed modal analysis with complex eigen-solutions. For the thermal analysis, heat transfer coefficients on the surfaces of a rotor as functions of time are first estimated by CFD simulation, and then imported to a thermal analysis program as the boundary condition. Finally, the temperature distribution of the rotor can be calculated by finite element analysis. The simulation results show that vortices will arise in the vented passages of straight-vent rotors, which means less heat carried away and lower heat transfer coefficients. The swirl-vent brake design is clearly better for thermal ventilation. Furthermore, under the same condition, aluminum-alloy rotors exhibit more uniform temperature distributions with smaller temperature gradients than cast-iron rotors do.


Sign in / Sign up

Export Citation Format

Share Document