Finite Element Analysis of Thermal-Induced Stresses in Submerged Arc Welded Chromium-Molybdenum Steel and Their Mitigation through Heat Treatment

2020 ◽  
Vol 29 (12) ◽  
pp. 8271-8285
Author(s):  
Saurav Suman ◽  
Avinish Tiwari ◽  
Pankaj Biswas ◽  
Manas Mohan Mahapatra
Author(s):  
Jaan Taagepera ◽  
Marty Clift ◽  
D. Mike DeHart ◽  
Keneth Marden

Three vessel modifications requiring heat treatment were analyzed prior to and during a planned turnaround at a refinery. One was a thick nozzle that required weld build up. This nozzle had been in hydrogen service and required bake-out to reduce the potential for cracking during the weld build up. Finite element analysis was used to study the thermal stresses involved in the bake-out. Another heat treatment studied was a PWHT of a nozzle replacement. The heat treatment band and temperature were varied with location in order to minimize cost and reduction in remaining strength of the vessel. Again, FEA was used to provide insight into the thermal stress profiles during heat treatment. The fmal heat treatment study was for inserting a new nozzle in a 1-1/4Cr-1/2Mo reactor. While this material would ordinarily require PWHT, the alteration was proposed to be installed without PWHT. Though accepted by the Jurisdiction, this nozzle installation was ultimately cancelled.


2008 ◽  
Vol 575-578 ◽  
pp. 1461-1466
Author(s):  
Byeong Choon Goo ◽  
Jung Won Seo

Railcar wheels and axles belong to the most critical components in railway vehicles. The service conditions of railway vehicles have been more severe in recent years due to speed-up. Therefore, a more precise evaluation of railcar wheel life and safety has been requested. Wheel/rail contact fatigue and thermal cracks due to braking are two major mechanisms of the railcar wheel failure. One of the main sources influencing on the contact zone failure is residual stress. The residual stress in wheels formed during heat treatment in manufacturing changes in the process of braking. Thus the fatigue life of railcar wheels should be estimated by considering both thermal stress and rolling contact. Also, the effect of residual stress variation due to manufacturing process and braking process should be included in simulating contact fatigue behavior. In this paper, an evaluation procedure for the contact fatigue life of railcar wheels considering the effects of residual stresses due to heat treatment, braking and repeated contact load is proposed. And the cyclic stressstrain history for fatigue analysis is simulated by finite element analysis for the moving contact load.


1994 ◽  
Vol 364 ◽  
Author(s):  
X.-L. Wang ◽  
S. Spooner ◽  
C. R. Hubbard ◽  
P. J. Maziasz ◽  
G. M. Goodwin ◽  
...  

AbstractNeutron diffraction was used to measure the residual stress distribution in an FeAl weld overlay on steel. It was found that the residual stresses accumulated during welding were essentially removed by the post-weld heat treatment that was applied to the specimen; most residual stresses in the specimen developed during cooling following the post-weld heat treatment. The experimental data were compared with a plasto-elastic finite element analysis. While some disagreement exists in absolute strain values, there is satisfactory agreement in strain spatial distribution between the experimental data and the finite element analysis.


Author(s):  
Phillip E. Prueter ◽  
Brian Macejko

Post weld heat treatment (PWHT) is an effective way to minimize weld residual stresses in pressure vessels and piping equipment. PWHT is required for carbon steels above a Code-defined thickness threshold and other low-alloy steels to mitigate the propensity for crack initiation and ultimately, brittle fracture. Additionally, PWHT is often employed to mitigate stress corrosion cracking due to environmental conditions. Performing local PWHT following component repairs or alterations is often more practical and cost effective than heat treating an entire vessel or a large portion of the pressure boundary. In particular, spot or bulls eye configurations are often employed in industry to perform PWHT following local weld repairs to regions of the pressure boundary. Both the ASME Boiler and Pressure Vessel (B&PV) Code and the National Board Inspection Code (NBIC) permit the use of local PWHT around nozzles or other pressure boundary repairs or alterations. Additionally, Welding Research Council (WRC) Bulletin 452 [1] offers detailed guidance relating to local PWHT and compares some of the Code-based methodologies for implementing local PWHT on pressure retaining equipment. Specifically, local PWHT methodologies provided in design Codes: ASME Section VIII Division 1 [2] and Division 2 [3], ASME Section III Subsection NB [4], British Standard 5500 [5], Australian Standard 1210 [6], and repair Codes: American Petroleum Institute (API) 510 [7] and NBIC [8] are discussed and compared in this study. While spot PWHT may be appropriate in certain cases, if the soak, heating, and gradient control bands are not properly sized and positioned, it can lead to permanent vessel distortion or detrimental residual stresses that can increase the likelihood of in-service crack initiation and possible catastrophic failure due to unstable flaw propagation. It is essential to properly engineer local or spot PWHT configurations to ensure that distortion, cracking of adjacent welds, and severe residual stresses are avoided. In some cases, this may require advanced thermal-mechanical finite element analysis (FEA) to simulate the local PWHT process and to predict the ensuing residual stress state of the repaired area. This paper investigates several case studies of local PWHT configurations where advanced, three-dimensional FEA is used to simulate the thermal-mechanical response of the repaired region on a pressure vessel and to optimize the most ideal PWHT arrangement. Local plasticity and distortion are quantified using advanced non-linear elastic-plastic analysis. Commentary on the ASME and NBIC Code-specified local PWHT requirements is rendered based on the detailed non-linear FEA results, and recommended good practice for typical local PWHT configurations is provided. Advanced computational simulation techniques such as the ones employed in this investigation offer a means for analysts to ensure that local PWHT configurations implemented following equipment repairs will not lead to costly additional damage, such as distortion or cracking that can ultimately prolong equipment downtime.


Author(s):  
Jose´ Manuel Franco-Nava ◽  
Oscar Dorantes-Go´mez ◽  
Erik Rosado-Tamariz ◽  
Jose´ Manuel Ferna´ndez-Da´vila ◽  
Reynaldo Rangel-Espinosa

The stress analysis of the runner due to different loading is one of the most important tools that contribute its structural integrity evaluation. Finite element method has shown to be a strong numerical technique to provide good engineering accuracy. In this paper, the flow induced stresses in a Francis turbine runner is presented by using the finite element analysis. The runner geometry considered within the computational domain was modelled by using a three-dimensional laser triangulation scanner coupled with a portable coordinate measurement system. The runner geometry was generated by a number of 3D sub models, one for each of the main components of the runner, crown, band and a blade. In order to obtain a blade geometry a portable coordinate measurement system based on optical digitalization technology (scanner technology) was used. Because of symmetry, only a section of the runner domain was used for the finite element analysis. The runner was modeled with twenty-node solid elements. Loads due to pressure on the blade were derived from CFD computations for the runner at different power conditions (100%, 85% and 75%) for a medium head hydro power plant. CFD computations were carried out using the Finite Volume Method implement within FINE™/Turbo by NUMECA. The turbulence mathematical model used for the CFD computation was the Sparlart-Allmaras. The mesh of the turbine runner included different computational domains. For the runner blades the computational domain (mesh block) was defined in order to capture the complete blade row. All mesh blocks were structured hexahedral. Centrifugal force based on the rotational speed was considered. Also, a combined type loading analysis was computed including both pressure and centrifugal force. Appropriate boundary conditions were set in order to obtain the results due to the different type of analysis. The number of finite elements included in the FEM model was able to capture the pressure gradients on the blade surfaces obtained from the CFD results, which were investigated by application of a three dimensional Navier-Stoke commercial turbomachinery oriented CFD code. Analysis of the flow through the spiral case and stay vanes was carried out so as to include appropriate flow effects induced by these components and boundary conditions at the inlet of the wicket. A CFD analysis for the wicket and runner was carried out to generate the so called CFD reference solution. The analysis presented in this paper represents an initial characterization in order to increase understanding about combined loads acting on blades and to establish a reference state of stresses further comparison after refurbishments or optimization of the runner blades for a medium head hydroelectric power station.


Sign in / Sign up

Export Citation Format

Share Document