Finite Element Analysis for the Verification of Post-Weld Heat Treatment of 9Cr-1Mo Welds

2005 ◽  
Author(s):  
W. Cheng
Author(s):  
Phillip E. Prueter ◽  
Brian Macejko

Post weld heat treatment (PWHT) is an effective way to minimize weld residual stresses in pressure vessels and piping equipment. PWHT is required for carbon steels above a Code-defined thickness threshold and other low-alloy steels to mitigate the propensity for crack initiation and ultimately, brittle fracture. Additionally, PWHT is often employed to mitigate stress corrosion cracking due to environmental conditions. Performing local PWHT following component repairs or alterations is often more practical and cost effective than heat treating an entire vessel or a large portion of the pressure boundary. In particular, spot or bulls eye configurations are often employed in industry to perform PWHT following local weld repairs to regions of the pressure boundary. Both the ASME Boiler and Pressure Vessel (B&PV) Code and the National Board Inspection Code (NBIC) permit the use of local PWHT around nozzles or other pressure boundary repairs or alterations. Additionally, Welding Research Council (WRC) Bulletin 452 [1] offers detailed guidance relating to local PWHT and compares some of the Code-based methodologies for implementing local PWHT on pressure retaining equipment. Specifically, local PWHT methodologies provided in design Codes: ASME Section VIII Division 1 [2] and Division 2 [3], ASME Section III Subsection NB [4], British Standard 5500 [5], Australian Standard 1210 [6], and repair Codes: American Petroleum Institute (API) 510 [7] and NBIC [8] are discussed and compared in this study. While spot PWHT may be appropriate in certain cases, if the soak, heating, and gradient control bands are not properly sized and positioned, it can lead to permanent vessel distortion or detrimental residual stresses that can increase the likelihood of in-service crack initiation and possible catastrophic failure due to unstable flaw propagation. It is essential to properly engineer local or spot PWHT configurations to ensure that distortion, cracking of adjacent welds, and severe residual stresses are avoided. In some cases, this may require advanced thermal-mechanical finite element analysis (FEA) to simulate the local PWHT process and to predict the ensuing residual stress state of the repaired area. This paper investigates several case studies of local PWHT configurations where advanced, three-dimensional FEA is used to simulate the thermal-mechanical response of the repaired region on a pressure vessel and to optimize the most ideal PWHT arrangement. Local plasticity and distortion are quantified using advanced non-linear elastic-plastic analysis. Commentary on the ASME and NBIC Code-specified local PWHT requirements is rendered based on the detailed non-linear FEA results, and recommended good practice for typical local PWHT configurations is provided. Advanced computational simulation techniques such as the ones employed in this investigation offer a means for analysts to ensure that local PWHT configurations implemented following equipment repairs will not lead to costly additional damage, such as distortion or cracking that can ultimately prolong equipment downtime.


1994 ◽  
Vol 364 ◽  
Author(s):  
X.-L. Wang ◽  
S. Spooner ◽  
C. R. Hubbard ◽  
P. J. Maziasz ◽  
G. M. Goodwin ◽  
...  

AbstractNeutron diffraction was used to measure the residual stress distribution in an FeAl weld overlay on steel. It was found that the residual stresses accumulated during welding were essentially removed by the post-weld heat treatment that was applied to the specimen; most residual stresses in the specimen developed during cooling following the post-weld heat treatment. The experimental data were compared with a plasto-elastic finite element analysis. While some disagreement exists in absolute strain values, there is satisfactory agreement in strain spatial distribution between the experimental data and the finite element analysis.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 127
Author(s):  
Zichen Liu ◽  
Xiaodong Hu ◽  
Zhiwei Yang ◽  
Bin Yang ◽  
Jingkai Chen ◽  
...  

In order to clarify the role of different post-weld heat treatment processes in the manufacturing process, welding tests, post-weld heat treatment tests, and finite element analysis (FEA) are carried out for 12C1MoV steel pipes. The simulated temperature field and residual stress field agree well with the measured results, which indicates that the simulation method is available. The influence of post-weld heat treatment process parameters on residual stress reduction results is further analyzed. It is found that the post weld dehydrogenation treatment could not release residual stress obviously. However, the residual stress can be relieved by 65% with tempering treatment. The stress relief effect of “post weld dehydrogenation treatment + temper heat treatment” is same with that of “temper heat treatment”. The higher the temperature, the greater the residual stress reduction, when the peak temperature is at 650–750 °C, especially for the stress concentration area. The longer holding time has no obvious positive effect on the reduction of residual stress.


Author(s):  
Jaan Taagepera ◽  
Marty Clift ◽  
D. Mike DeHart ◽  
Keneth Marden

Three vessel modifications requiring heat treatment were analyzed prior to and during a planned turnaround at a refinery. One was a thick nozzle that required weld build up. This nozzle had been in hydrogen service and required bake-out to reduce the potential for cracking during the weld build up. Finite element analysis was used to study the thermal stresses involved in the bake-out. Another heat treatment studied was a PWHT of a nozzle replacement. The heat treatment band and temperature were varied with location in order to minimize cost and reduction in remaining strength of the vessel. Again, FEA was used to provide insight into the thermal stress profiles during heat treatment. The fmal heat treatment study was for inserting a new nozzle in a 1-1/4Cr-1/2Mo reactor. While this material would ordinarily require PWHT, the alteration was proposed to be installed without PWHT. Though accepted by the Jurisdiction, this nozzle installation was ultimately cancelled.


2008 ◽  
Vol 575-578 ◽  
pp. 1461-1466
Author(s):  
Byeong Choon Goo ◽  
Jung Won Seo

Railcar wheels and axles belong to the most critical components in railway vehicles. The service conditions of railway vehicles have been more severe in recent years due to speed-up. Therefore, a more precise evaluation of railcar wheel life and safety has been requested. Wheel/rail contact fatigue and thermal cracks due to braking are two major mechanisms of the railcar wheel failure. One of the main sources influencing on the contact zone failure is residual stress. The residual stress in wheels formed during heat treatment in manufacturing changes in the process of braking. Thus the fatigue life of railcar wheels should be estimated by considering both thermal stress and rolling contact. Also, the effect of residual stress variation due to manufacturing process and braking process should be included in simulating contact fatigue behavior. In this paper, an evaluation procedure for the contact fatigue life of railcar wheels considering the effects of residual stresses due to heat treatment, braking and repeated contact load is proposed. And the cyclic stressstrain history for fatigue analysis is simulated by finite element analysis for the moving contact load.


Author(s):  
Christopher M. Gill ◽  
Paul Hurrell ◽  
John Francis ◽  
Mark Turski

This paper describes the design optimisation of an SA508 ferritic steel ring weld specimen using FE modelling techniques. The aim was to experimentally and analytically study the effect of post weld heat treatment upon a triaxial residual stress field. Welding highly constrained geometries, such as those found in some pressure vessel joints, can lead to the formation of highly triaxial stress fields. It is thought that application of post weld heat treatments will not fully relax hydrostatic stress fields. Therefore a ferritic multi-pass ring weld specimen was designed and optimised, using 2D finite element modelling, to generate a high magnitude triaxial stress field. The specimen thickness and weld-prep geometry was optimised to produce a large hydrostatic stress field and still allow efficient use of neutron diffraction to measure the residual stress. This paper reports the development of the test specimen geometry and compares the results of welding FE analysis and neutron diffraction measurements. Welding residual stresses were experimentally determined using neutron diffraction; both before post weld heat treatment. Three dimensional moving heat source weld finite element modelling has been used to predict the residual stresses generated by the welding process used. Finite element modelling examined the effect of phase transformation upon the residual stress field produced by welding. The relaxation of welding stresses by creep during post weld heat treatment has also been modelled. Comparisons between the modelled and measured as-welded residual stress profiles are presented. This work allows discussion of the effect of post weld heat treatment of triaxial stress fields and determines if finite element modelling is capable of correctly predicting the stress relaxation.


Author(s):  
Kolton Landreth ◽  
Qi Li ◽  
Raghav Marwaha

Abstract Full-encirclement split tee fittings for hot tapping and plugging (HT&P) wrap completely around the pipeline and are welded in place. The welded joint provides mechanical reinforcement of the pipe and branch. When full-encirclement hot tap tees are welded to pipelines 24 inches in diameter or larger, the header must often be at least 1.25 inches thick to pass the required calculations for reinforcement. This means the joint will require post weld heat treatment (PWHT) according to ASME B31.8 and CSA Z662. However, PWHT can be extremely dangerous and impractical, potentially elevating temperature to the point where material strength of the pressurized pipeline is compromised. An engineering critical assessment per ASME FFS-1/API 579 indicated PWHT may not be required for a full-encirclement hot tap tee over 1.25 inches thick. Specifically, research showed that the residual stresses developed during the welding process may not limit the design of a full-encirclement tee or lead to shorter pipeline design life. This paper illustrates how a “more rigorous analysis” per paragraph 802.2.2[b] of ASME B31.8 and paragraph 4.3.12.2 of CSA Z662 may help operators avoid the PWHT requirement. It discusses the finite element analysis (FEA) simulations researchers used to induce residual stresses in a carbon steel fitting. The residual stresses induced in the fitting were used as initial condition for plastic collapse and fatigue evaluations.


Author(s):  
Seung-gun Lee ◽  
Youngho Son

Weld residual stress is a troublesome problem in nuclear power plant, because it can accelerate crack growth in weld region. For low alloy steel, Post Weld Heat Treatment (PWHT) is essentially needed to relieve residual stress and to temper the hard regions in the heat affected zone (HAZ). Local PWHT is used when it is impractical to heat the whole component in a furnace. The rules and practices of related codes and standards, such as ASME and AWS, associated with local PWHT are quite different. For example, according to ASME Section III, the minimum width of heated band at each side of the weld shall be the thickness of the weld or 2 in., whichever is less. While, according to ASME B31.1, the width of heated band shall be at least three times the wall thickness at the weld of the thickest part being joined. In this paper, the status of the related code and standard associated with local PWHT is briefly summarized, and baseline information on local PWHT is explained based on FEA (Finite Element Analysis) results and optimized local PWHT parameter is suggested to support current code of practices.


Sign in / Sign up

Export Citation Format

Share Document