Suppression of Austenite Grain Coarsening by Ferrite Pinning during Pseudo-carburizing Treatment

Author(s):  
L. Q. Liu ◽  
X. C. Xiong ◽  
G. D. Wang ◽  
H. L. Yi
Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 504
Author(s):  
Huasong Liu ◽  
Yannan Dong ◽  
Hongguang Zheng ◽  
Xiangchun Liu ◽  
Peng Lan ◽  
...  

AlN precipitates are frequently adopted to pin the austenite grain boundaries for the high-temperature carburization of special gear steels. For these steels, the grain coarsening criterion in the carburizing process is required when encountering the composition optimization for the crack-sensitive steels. In this work, the quantitative influence of the Al and N content on the grain size after carburization is studied through pseudocarburizing experiments based on 20Cr steel. According to the grain structure feature and the kinetic theory, the abnormal grain growth is demonstrated as the mode of austenite grain coarsening in carburization. The AlN precipitate, which provides the dominant pinning force, is ripened in this process and the particle size can be estimated by the Lifshitz−Slyosov−Wagner theory. Both the mass fraction and the pinning strength of AlN precipitate show significant influence on the grain growth behavior with the critical values indicating the grain coarsening. These criteria correspond to the conditions of abnormal grain growth when bearing the Zener pinning, which has been analyzed by the multiple phase-field simulation. Accordingly, the models to predict the austenite grain coarsening in carburization were constructed. The prediction is validated by the additional experiments, resulting in accuracies of 92% and 75% for the two models, respectively. Finally, one of the models is applied to optimize the Al and N contents of commercial steel.


Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1096
Author(s):  
Henri Tervo ◽  
Antti Kaijalainen ◽  
Vahid Javaheri ◽  
Satish Kolli ◽  
Tuomas Alatarvas ◽  
...  

Deterioration of the toughness in heat-affected zones (HAZs) due to the thermal cycles caused by welding is a known problem in offshore steels. Acicular ferrite (AF) in the HAZ is generally considered beneficial regarding the toughness. Three experimental steels were studied in order to find optimal conditions for the AF formation in the coarse-grained heat-affected zone (CGHAZ). One of the steels was Al-deoxidized, while the other two were Ti-deoxidized. The main focus was to distinguish whether the deoxidation practice affected the AF formation in the simulated CGHAZ. First, two different peak temperatures and prolonged annealing were used to study the prior austenite grain coarsening. Then, the effect of welding heat input was studied by applying three cooling times from 800 °C to 500 °C in a Gleeble thermomechanical simulator. The materials were characterized using electron microscopy, energy-dispersive X-ray spectrometry, and electron backscatter diffraction. The Mn depletion along the matrix-particle interface was modelled and measured. It was found that AF formed in the simulated CGHAZ of one of the Ti-deoxidized steels and its fraction increased with increasing cooling time. In this steel, the inclusions consisted mainly of small (1–4 μm) TiOx-MnS, and the tendency for prior austenite grain coarsening was the highest.


2004 ◽  
Vol 45 (9) ◽  
pp. 2797-2804 ◽  
Author(s):  
David San Martín ◽  
Francisca G. Caballero ◽  
Carlos Capdevila ◽  
Carlos García de Andrés

2015 ◽  
Vol 817 ◽  
pp. 121-126 ◽  
Author(s):  
Xiang Liu ◽  
Fan Zhao ◽  
Zheng Qiang Dong ◽  
Chao Lei Zhang ◽  
Yu Shan Kou ◽  
...  

The effect of 0.018% niobium additions on austenite grain coarsening behavior of GCr15 bearing steel was studied. Results indicate that the coarsening temperatures of No.1 and the No.2 experimental steel were 950°C and 1100°C. The austenite grain coarsening temperature was increased by 150°C by the addition of 0.018% Nb in bearing steel. The grain growth equations of two experimental steels at different soaking temperatures from 850°C to 1250°C with the soaking time of 30 min are as follows: the equation of No.1 steel is D1=1.85×105·exp (-6.57×104/RT); the equations of No.2 steel below and above 1100°C is D2=5.08×102·exp (-2.49×104/RT) and D2=1.06×108·exp (-1.31×105/RT), respectively. The grain growth equations of two experimental steels at different soaking time from 15 to 120 min with the soaking temperature of 840°C are as follows: the equation of No.1 steel is D1=4.83×10-2·t0.72 while that of No.2 steel is D2=1.25·t0.18.


Author(s):  
Hemant Sharma ◽  
Richard M. Huizenga ◽  
Aleksei Bytchkov ◽  
Jilt Sietsma ◽  
S. Erik Offerman

2016 ◽  
Vol 860 ◽  
pp. 152-157 ◽  
Author(s):  
Mohiuddin Ahmed ◽  
Md Mohar Ali Bepari ◽  
Roisul Hasan Galib

The austenite grain coarsening behavior of low carbon (0.13% C) structural steels containing chromium and nickel singly or in combination were studied by heating the steels at successive high temperature in the austenite zone in the temperature range of 900-1100°C with an interval of 50°C. The carburizing technique has been adopted to reveal the prior austenite grain boundaries and mean linear intercept method was used to measure the austenite grain size.It was found that on heating the undissolved particles of chromium carbide, Cr2C refine the austenite grain size at temperature below 1000°C, but the effect decreases with increasing temperature. Nickel does not produce any austenite grain refinement. In the presence of nickel particles of chromium carbide are less effective than chromium carbide particles in the absence of nickel in the refinement of austenite grain size.


Sign in / Sign up

Export Citation Format

Share Document