High-Temperature Corrosion Behaviour of CNT-reinforced Zirconium Yttrium Coatings on Boiler Tube Steel in Coal-Fired Boiler of Thermal Power Plant

2020 ◽  
Vol 20 (6) ◽  
pp. 2029-2039
Author(s):  
Sandeep Kumar ◽  
Rakesh Bhatia ◽  
Hazoor Singh
2018 ◽  
Vol 37 (9-10) ◽  
pp. 995-999 ◽  
Author(s):  
Guohua Yang ◽  
Yuanbo Gou ◽  
Xinshi Liu ◽  
Xiaoming Zhang ◽  
Tuo Zhang

AbstractHigh temperature corrosion of the water wall tube in a 50 MW thermal power plant was investigated which caused several boiler accidents. X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS) were used to observe the cross-sectional morphology of the tube and analyze the oxide scales. Results show that the boiler water and the coal quality did not meet the requirements. High temperature corrosion of water wall tubes was attributed to the using of coal which had a higher ash content and lower received lower heating value. Higher dissolved oxygen and incrustation in the boiler water caused serious corrosion at the inner surface of water wall tube, which led to the possibility of decarburization and degradation of the steel. Suitable coal blending and stability of the thermal load were the effective means to prevent the high temperature corrosion of the tube.


2020 ◽  
Vol 39 (1) ◽  
pp. 256-260
Author(s):  
Ravindra Kumar ◽  
Vinay Kumar Tewari ◽  
Satya Prakash

AbstractCorrosion at elevated temperature is a serious problem in running thermal power plants because of the use of low-grade fuels that contain substantial amounts of sulphur, vanadium, sodium etc. This article reports the high-temperature corrosion of weld metal and heat-affected zone (HAZ) of shielded metal arc-welding (SMAW) weldment in GrA1 steel in a molten salt (Na2SO4–60% V2O5) environment at 900°C under cyclic conditions. The thermogravimetric technique was used to observe the kinetics of corrosion. The corrosion products formed on weld metal and HAZ of SMAW welded steel were characterized by scanning electron microscopy with energy dispersive X-ray analysis (EDX) and X-ray diffraction pattern. Weld metal was found to oxidize at a higher rate than those of HAZ due to the presence of sodium and sulphur in the inner oxide scale as confirmed by EDX, and this leads to high corrosion rate (in terms of weight gain).


2016 ◽  
Vol 1137 ◽  
pp. 88-100 ◽  
Author(s):  
Sukhpal Singh Chatha ◽  
Hazoor S. Sidhu ◽  
Buta Singh Sidhu

In the present investigation, 75Cr3C2-25NiCr coating was deposited on T91 boiler tube steel substrate by high velocity oxy-fuel (HVOF) process to enhance high-temperature corrosion resistance. High-temperature performance of bare, as well as HVOF-coated steel specimens was evaluated for 1500 h under cyclic conditions in the platen superheater zone coal-fired boiler, where the temperature was around 900 °C. Experiments were carried out for 15 cycles each of 100 h duration followed by 1 h cooling at ambient temperature. The performance of the bare and coated specimens was assessed via metal thickness loss corresponding to the corrosion scale formation and the depth of internal corrosion attack. The uncoated boiler steel suffered from a catastrophic degradation in the form of internal oxidation attack and thickness loss. The 75Cr3C2-25NiCr coating showed good adherence to the boiler steel during the exposures with no tendency for internal oxidation.


Sign in / Sign up

Export Citation Format

Share Document