Microstructural white matter alterations in Alzheimer’s disease and amnestic mild cognitive impairment and its diagnostic value based on diffusion kurtosis imaging: a tract-based spatial statistics study

Author(s):  
Tongtong Li ◽  
Yu Zhang ◽  
Xiuwei Fu ◽  
Xianchang Zhang ◽  
Yuan Luo ◽  
...  
2020 ◽  
Vol 17 (4) ◽  
pp. 480-486
Author(s):  
Wei Pu ◽  
Xudong Shen ◽  
Mingming Huang ◽  
Zhiqian Li ◽  
Xianchun Zeng ◽  
...  

Objective: Application of diffusion tensor imaging (DTI) to explore the changes of FA value in patients with Parkinson's disease (PD) with mild cognitive impairment. Methods: 27 patients with PD were divided into PD with mild cognitive impairment (PD-MCI) group (n = 7) and PD group (n = 20). The original images were processed using voxel-based analysis (VBA) and tract-based spatial statistics (TBSS). Results: The average age of pd-mci group was longer than that of PD group, and the course of disease was longer than that of PD group. Compared with PD group, the voxel based analysis-fractional anisotropy (VBA-FA) values of PD-MCI group decreased in the following areas: bilateral frontal lobe, bilateral temporal lobe, bilateral parietal lobe, bilateral subthalamic nucleus, corpus callosum, and gyrus cingula. Tract-based spatial statistics-fractional anisotropy (TBSS-FA) values in PD-MCI group decreased in bilateral corticospinal tract, anterior cingulum, posterior cingulum, fornix tract, bilateral superior thalamic radiation, corpus callosum(genu, body and splenium), bilateral uncinate fasciculus, bilateral inferior longitudinal fasciculus, bilateral superior longitudinal fasciculus, bilateral superior fronto-occipital fasciculus, bilateral inferior fronto-occipital fasciculus, and bilateral parietal-occipital tracts. The mean age of onset in the PD-MCI group was greater than that in the PD group, and the disease course was longer than that in the PD group. Conclusion: DTI-based VBA and TBSS post-processing methods can detect abnormalities in multiple brain areas and white matter fiber tracts in PD-MCI patients. Impairment of multiple cerebral cortex and white matter fiber pathways may be an important causes of cognitive dysfunction in PD-MCI.


2021 ◽  
pp. 1-14
Author(s):  
Fangmei He ◽  
Yuchen Zhang ◽  
Xiaofeng Wu ◽  
Youjun Li ◽  
Jie Zhao ◽  
...  

Background: Amnestic mild cognitive impairment (aMCI) is the transitional stage between normal aging and Alzheimer’s disease (AD). Some aMCI patients will progress into AD eventually, whereas others will not. If the trajectory of aMCI can be predicted, it would enable early diagnosis and early therapy of AD. Objective: To explore the development trajectory of aMCI patients, we used diffusion tensor imaging to analyze the white matter microstructure changes of patients with different trajectories of aMCI. Methods: We included three groups of subjects:1) aMCI patients who convert to AD (MCI-P); 2) aMCI patients who remain in MCI status (MCI-S); 3) normal controls (NC). We analyzed the fractional anisotropy and mean diffusion rate of brain regions, and we adopted logistic binomial regression model to predicate the development trajectory of aMCI. Results: The fraction anisotropy value is significantly reduced, the mean diffusivity value is significantly increased in the two aMCI patient groups, and the MCI-P patients presented greater changes. Significant changes are mainly located in the cingulum, fornix, hippocampus, and uncinate fasciculus. These changed brain regions significantly correlated with the patient’s Mini-Mental State Examination scores. Conclusion: The study predicted the disease trajectory of different types of aMCI patients based on the characteristic values of the above-mentioned brain regions. The prediction accuracy rate can reach 90.2%, and the microstructure characteristics of the right cingulate band and the right hippocampus may have potential clinical application value to predict the disease trajectory.


Sign in / Sign up

Export Citation Format

Share Document