Assessment of White Matter Lesions in Parkinson's Disease: Voxel-based Analysis and Tract-based Spatial Statistics Analysis of Parkinson's Disease with Mild Cognitive Impairment

2020 ◽  
Vol 17 (4) ◽  
pp. 480-486
Author(s):  
Wei Pu ◽  
Xudong Shen ◽  
Mingming Huang ◽  
Zhiqian Li ◽  
Xianchun Zeng ◽  
...  

Objective: Application of diffusion tensor imaging (DTI) to explore the changes of FA value in patients with Parkinson's disease (PD) with mild cognitive impairment. Methods: 27 patients with PD were divided into PD with mild cognitive impairment (PD-MCI) group (n = 7) and PD group (n = 20). The original images were processed using voxel-based analysis (VBA) and tract-based spatial statistics (TBSS). Results: The average age of pd-mci group was longer than that of PD group, and the course of disease was longer than that of PD group. Compared with PD group, the voxel based analysis-fractional anisotropy (VBA-FA) values of PD-MCI group decreased in the following areas: bilateral frontal lobe, bilateral temporal lobe, bilateral parietal lobe, bilateral subthalamic nucleus, corpus callosum, and gyrus cingula. Tract-based spatial statistics-fractional anisotropy (TBSS-FA) values in PD-MCI group decreased in bilateral corticospinal tract, anterior cingulum, posterior cingulum, fornix tract, bilateral superior thalamic radiation, corpus callosum(genu, body and splenium), bilateral uncinate fasciculus, bilateral inferior longitudinal fasciculus, bilateral superior longitudinal fasciculus, bilateral superior fronto-occipital fasciculus, bilateral inferior fronto-occipital fasciculus, and bilateral parietal-occipital tracts. The mean age of onset in the PD-MCI group was greater than that in the PD group, and the disease course was longer than that in the PD group. Conclusion: DTI-based VBA and TBSS post-processing methods can detect abnormalities in multiple brain areas and white matter fiber tracts in PD-MCI patients. Impairment of multiple cerebral cortex and white matter fiber pathways may be an important causes of cognitive dysfunction in PD-MCI.

2021 ◽  
pp. 155005942110582
Author(s):  
Sophie A. Stewart ◽  
Laura Pimer ◽  
John D. Fisk ◽  
Benjamin Rusak ◽  
Ron A. Leslie ◽  
...  

Parkinson's disease (PD) is a neurodegenerative disorder that is typified by motor signs and symptoms but can also lead to significant cognitive impairment and dementia Parkinson's Disease Dementia (PDD). While dementia is considered a nonmotor feature of PD that typically occurs later, individuals with PD may experience mild cognitive impairment (PD-MCI) earlier in the disease course. Olfactory deficit (OD) is considered another nonmotor symptom of PD and often presents even before the motor signs and diagnosis of PD. We examined potential links among cognitive impairment, olfactory functioning, and white matter integrity of olfactory brain regions in persons with early-stage PD. Cognitive tests were used to established groups with PD-MCI and with normal cognition (PD-NC). Olfactory functioning was examined using the University of Pennsylvania Smell Identification Test (UPSIT) while the white matter integrity of the anterior olfactory structures (AOS) was examined using magnetic resonance imaging (MRI) diffusion tensor imaging (DTI) analysis. Those with PD-MCI demonstrated poorer olfactory functioning and abnormalities based on all DTI parameters in the AOS, relative to PD-NC individuals. OD and microstructural changes in the AOS of individuals with PD may serve as additional biological markers of PD-MCI.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yau-Yau Wai ◽  
Wen-Chuin Hsu ◽  
Hon-Chung Fung ◽  
Jiann-Der Lee ◽  
Hsiao-Lung Chan ◽  
...  

Rationale and Objectives. The primary objective of the current investigation was to characterize white matter integrity in different subtypes of mild cognitive impairment (MCI) using tract-based spatial statistics of diffusion tensor imaging.Materials and Methods. The study participants were divided into 4 groups of 30 subjects each as follows: cognitively healthy controls, amnestic MCI, dysexecutive MCI, and Alzheimer’s disease (AD). All subjects underwent a comprehensive neuropsychological assessment, apolipoprotein E genotyping, and 3-tesla MRI. The diffusion tensor was reconstructed and then analyzed using tract-based spatial statistics. The changes in brain white matter tracts were also examined according to the apolipoprotein Eε4 status.Results. Compared with controls, amnestic MCI patients showed significant differences in the cerebral white matter, where changes were consistently detectable in the frontal and parietal lobes. We found a moderate impact of the apolipoprotein Eε4 status on the extent of white matter disruption in the amnestic MCI group. Patients with AD exhibited similar but more extensive alterations, while no significant changes were observed in dysexecutive MCI patients.Conclusion. The results from this study indicate that amnestic MCI is the most likely precursor to AD as both conditions share significant white matter damage. By contrast, dysexecutive MCI seems to be characterized by a distinct pathogenesis.


Author(s):  
Katie Wiltshire ◽  
Luis Concha ◽  
Myrlene Gee ◽  
Thomas Bouchard ◽  
Christian Beaulieu ◽  
...  

Background:In Parkinson's disease (PD) cell loss in the substantia nigra is known to result in motor symptoms; however widespread pathological changes occur and may be associated with non-motor symptoms such as cognitive impairment. Diffusion tensor imaging is a quantitative imaging method sensitive to the micro-structure of white matter tracts.Objective:To measure fractional anisotropy (FA) and mean diffusivity (MD) values in the corpus callosum and cingulum pathways, defined by diffusion tensor tractography, in patients with PD, PD with dementia (PDD) and controls and to determine if these measures correlate with Mini-Mental Status Examination (MMSE) scores in parkinsonian patients.Methods:Patients with PD (17 Males [M], 12 Females [F]), mild PDD (5 M, 1F) and controls (8 M, 7F) underwent cognitive testing and MRI scans. The corpus callosum was divided into four regions and the cingulum into two regions bilaterally to define tracts using the program DTIstudio (Johns Hopkins University) using the fiber assignment by continuous tracking algorithm. Volumetric MRI scans were used to measure white and gray matter volumes.Results:Groups did not differ in age or education. There were no overall FA or MD differences between groups in either the corpus callosum or cingulum pathways. In PD subjects the MMSE score correlated with MD within the corpus callosum. These findings were independent of age, sex and total white matter volume.Conclusions:The data suggest that the corpus callosum or its cortical connections are associated with cognitive impairment in PD patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xia Wei ◽  
Chunyan Luo ◽  
Qian Li ◽  
Na Hu ◽  
Yuan Xiao ◽  
...  

Background: Tract-based spatial statistics (TBSS) studies based on diffusion tensor imaging (DTI) have revealed extensive abnormalities in white matter (WM) fibers of Parkinson's disease (PD); however, the results were inconsistent. Therefore, a meta-analytical approach was used in this study to find the most prominent and replicable WM abnormalities of PD.Methods: Online databases were systematically searched for all TBSS studies comparing fractional anisotropy (FA) between patients with PD and controls. Subsequently, we performed the meta-analysis using a coordinate-based meta-analytic software called seed-based d mapping. Meanwhile, meta-regression was performed to explore the potential correlation between the alteration of FA and the clinical characteristics of PD.Results: Out of a total of 1,701 studies that were identified, 23 studies were included. Thirty datasets, including 915 patients (543 men) with PD and 836 healthy controls (449 men), were included in the current study. FA reduction was identified in the body of the corpus callosum (CC; 245 voxels; z = −1.739; p < 0.001) and the left inferior fronto-occipital fasciculus (IFOF) 118 voxels; z = −1.182; p < 0.001). Both CC and IFOF maintained significance in the sensitivity analysis. No increase in FA was identified, but the percentage of male patients with PD was positively associated with the value of FA in the body of the CC.Conclusions: Although some limitations exist, DTI is regarded as a valid way to identify the pathophysiology of PD. It could be more beneficial to integrate DTI parameters with other MRI techniques to explore brain degeneration in PD.


2019 ◽  
Vol 12 ◽  
pp. 175628641984344 ◽  
Author(s):  
Martin Gorges ◽  
Hans-Peter Müller ◽  
Inga Liepelt-Scarfone ◽  
Alexander Storch ◽  
Richard Dodel ◽  
...  

Background: The nonmotor symptom spectrum of Parkinson’s disease (PD) includes progressive cognitive decline mainly in late stages of the disease. The aim of this study was to map the patterns of altered structural connectivity of patients with PD with different cognitive profiles ranging from cognitively unimpaired to PD-associated dementia. Methods: Diffusion tensor imaging and neuropsychological data from the observational multicentre LANDSCAPE study were analyzed. A total of 134 patients with PD with normal cognitive function (56 PD-N), mild cognitive impairment (67 PD-MCI), and dementia (11 PD-D) as well as 72 healthy controls were subjected to whole-brain-based fractional anisotropy mapping and covariance analysis with cognitive performance measures. Results: Structural data indicated subtle changes in the corpus callosum and thalamic radiation in PD-N, whereas severe white matter impairment was observed in both PD-MCI and PD-D patients including anterior and inferior fronto-occipital, uncinate, insular cortices, superior longitudinal fasciculi, corona radiata, and the body of the corpus callosum. These regional alterations were demonstrated for PD-MCI and were more pronounced in PD-D. The pattern of involved regions was significantly correlated with the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) total score. Conclusions: The findings in PD-N suggest impaired cross-hemispherical white matter connectivity that can apparently be compensated for. More pronounced involvement of the corpus callosum as demonstrated for PD-MCI together with affection of fronto-parieto-temporal structural connectivity seems to lead to gradual disruption of cognition-related cortico-cortical networks and to be associated with the onset of overt cognitive deficits. The increase of regional white matter damage appears to be associated with the development of PD-associated dementia.


Sign in / Sign up

Export Citation Format

Share Document