Structural characteristics and implication on tectonic evolution of the Daerbute strike-slip fault in West Junggar area, NW China

2018 ◽  
Vol 12 (3) ◽  
pp. 555-568 ◽  
Author(s):  
Kongyou Wu ◽  
Yangwen Pei ◽  
Tianran Li ◽  
Xulong Wang ◽  
Yin Liu ◽  
...  
2018 ◽  
Vol 160 ◽  
pp. 48-66 ◽  
Author(s):  
Chu Wu ◽  
Tao Hong ◽  
Xing-Wang Xu ◽  
Ming-Jian Cao ◽  
Hao Li ◽  
...  

2020 ◽  
Vol 114 ◽  
pp. 104208
Author(s):  
Guanghui Wu ◽  
Kuanzhi Zhao ◽  
Haizhou Qu ◽  
Nicola Scarselli ◽  
Yintao Zhang ◽  
...  

2020 ◽  
Author(s):  
Jie Zhang ◽  
Zhiping Wu ◽  
Yanjun Cheng

<p>The horsetail structure, also named brush structure, generally refers to a sets of secondary faults converged to the primary fault on the plane. Based on 2-D and 3-D seismic data, the structural characteristics, evolution and mechanism of the horsetail structure of Liaodong Bay area in Bohai Bay Basin and Weixinan area in Beibuwan Basin are analyzed. In the Liaodong Bay area, the primary fault of the horsetail structure is the NNE-striking branch fault of Tan-Lu strike-slip fault zone. The NE-striking secondary extensional faults converged to the primary strike-slip fault. Fault activity analysis shows that both the primary and secondary faults intensively activated during the third Member of the Shahejie Formation (42~38 Ma). In the Weixinan area, the NE-striking Weixinan fault is the primary fault of the horsetail structure, which is an extensional fault. A large amount of EW-striking secondary extensional faults converged to the primary NE-striking Weixinan fault. Fault activity analysis shows that NE-striking primary fault intensively activated during the second Member of the Liushagang Formation (48.6~40.4 Ma), whereas the EW-striking secondary faults intensively activated during the Weizhou Formation (33.9~23 Ma). The different structure and evolution of the horsetail structure in the Liaodong Bay area and Weixinan area are mainly resulted from the regional tectonic settings. About 42 Ma, the change of subduction direction of the Pacific plate and the India-Eurasian collision resulted in the right-lateral strike-slip movement of NNE-striking Tan-Lu fault and the formation of NE-striking extensional faults along the bend of the strike-slip fault, therefore, the horsetail structure of Liaodong Bay area formed. However, the formation of the horsetail structure of Weixinan area is related to the clockwise rotation of extension stress in the South China Sea (SCS): 1) During Paleocene to M. Eocene (65~37.8 Ma), the retreat of Pacific plate subduction zone resulted in the formation of NW-SE extensional stress field in the north margin of the SCS, NE-striking primary fault of horsetail structure formed; 2) During L. Eocene to E. Oligocene (37.8~28.4 Ma), the change of subduction direction of the Pacific plate and the India-Eurasian collision resulted in the clockwise rotation of extension direction from NW-SE to N-S in the north margin of the SCS, a large amount of EW-striking secondary faults of horsetail structure formed, and the horsetail structure was totally formed in the Weixinan area until this stage.</p>


2015 ◽  
Vol 664 ◽  
pp. 244-255 ◽  
Author(s):  
Eugenio E. Veloso ◽  
Rodrigo Gomila ◽  
José Cembrano ◽  
Rodrigo González ◽  
Erik Jensen ◽  
...  

2011 ◽  
Vol 29 (6) ◽  
pp. 743-758 ◽  
Author(s):  
Xiuxiang Lü ◽  
Xiang Wang ◽  
Jianfa Han ◽  
Weiwei Jiao ◽  
Hongfeng Yu ◽  
...  

Large-scale weathering crust karsted carbonate reservoir beds were developed in the Lower Ordovician Yingshan Formation on the northern slope of the Tazhong area in the Tarim Basin, NW China. The research on weathering crust karsted reservoir beds and faulting showed strongly heterogeneous karsted reservoir beds characterized by horizontal contiguous distribution and vertical superimposition, with fracture-hole as the main reservoir space. High quality reservoir beds were developed in the vertical seepage zone and horizontal phreatic zone, 0–200 meters below the unconformity. Reservoir bed quality of karsted carbonate rock was greatly improved by faulting, which increased the depth and size of karstification. A strike-slip fault developed over a long period in the NE direction and a thrust fault in the NW direction crossed each other, and caused distinct segmentation of the Tazhong No.1 Fault and dissection of the Yingshan Formation into multiple structural units. The strike-slip fault was the significant hydrocarbon migration pathway. Multiple hydrocarbon charging points were formed by the thrust fault and strike-slip fault, as the important fill-in of late-stage gas accumulation. Under the dual control of faulting and karstification, accumulation of hydrocarbons in the Lower Ordovician Yingshan Formation showed distinct segment-wise and block-wise features. Oil distribution is “high in the west and interior, low in the east and exterior”, while gas distribution is the opposite. The hydrocarbon play extends within 0.8–4.5 kilometers from the strike-slip fault and appeared layered vertically at 10–220 meters below the unconformity.


Sign in / Sign up

Export Citation Format

Share Document