liaodong bay
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 67)

H-INDEX

18
(FIVE YEARS 4)

Author(s):  
Weijun Guo ◽  
Jibing Zou ◽  
Sihong Liu ◽  
Xuewen Chen ◽  
Xiangpeng Kong ◽  
...  

Spatial–seasonal variations in dissolved heavy metals in surface seawater were analyzed based on surveys at 87 sampling sites and water samples from six rivers across Liaodong Bay. The concentrations of copper (Cu), lead (Pb), cadmium (Cd), and zinc (Zn) had ranges of 0.20–40.00 (5.45 ± 5.67), 0.51–33.64 (4.68 ± 3.93), 0.03–13.47 (2.22 ± 2.01), and 0.50–80.09 μg/L (14.22 ± 16.32), respectively, throughout the four seasons of 2020. The trace metal concentration showed a spatial gradient of high to low from river to estuary and from inshore to offshore areas. A combination of pollution levels and marine sensitivity was employed to assess the pollution degree of the heavy metals. As a whole, the single pollution factors of trace metals in Liaodong Bay were ranged in the order Pb > Zn > Cu > Cd. The total pollution degree was relatively high in autumn and summer due to increased riverine inputs after the rainy season, while relatively low in spring and winter. These findings provide baseline data for future targeting policies to protect marine environments in Liaodong Bay.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Zhiyong Wang ◽  
Peilei Sun ◽  
Lihua Wang ◽  
Mengyue Zhang ◽  
Zihao Wang

It is of great significance to monitor sea ice for relieving and preventing sea ice disasters. In this paper, the growth and development of sea ice in Liaodong Bay of Bohai Sea in China were monitored using Sentinel-2 remote sensing data during the freezing period from January to March in 2018. Based on the comprehensive analysis of the spectral characteristics of seawater and sea ice in visible bands, supplemented by the Normalized Difference Snow Index (NDSI) and the Normalized Difference Vegetation Index (NDVI), we proposed a new method based on decision tree classification for extracting sea ice types in Liaodong Bay of Bohai Sea. Using the remote sensing data of eight satellite overpasses acquired from Sentinel-2A/B satellites, the distribution and area of the different sea ice types in Liaodong Bay during the freezing period of 2017/2018 were obtained. Compared with the maximum likelihood (ML) classification method and the support vector machine (SVM) classification method, the proposed method has higher accuracy when discriminating the sea ice types, which proved the new method proposed in this paper is suitable for extracting sea ice types from Sentinel-2 optical remote sensing data in Liaodong Bay. And its classification accuracy reaches 88.05%. The whole process of evolution such as the growth and development of sea ice in Liaodong Bay during the freezing period from January to March in 2018 was monitored. The maximum area of sea ice was detected on 27 January 2018, about 10,187 km2. At last, the quantitative relationship model between the sea ice area and the mean near-surface temperature derived by MODIS data in Liaodong Bay was established. Through research, we found that the mean near-surface temperature was the most important factor for affecting the formation and melt of sea ice in Liaodong Bay.


2021 ◽  
Vol 13 (19) ◽  
pp. 3867
Author(s):  
Mengjun Li ◽  
Yonghua Sun ◽  
Xiaojuan Li ◽  
Mengying Cui ◽  
Chen Huang

Eutrophication is considered to be a significant threat to estuaries and coastal waters. Various localized studies on the world’s oceans have recognized and confirmed that the Forel-Ule Color Index (FUI) or optical measurements are proportional to several water quality variables based on the relatively clear Chl-a-based waters. However, the application potential of FUI in the turbid estuary with complex optics has not been explored. In this study, we selected the coastal waters in the northern Liaodong Bay as the study area, using the field hyperspectral reflectances (Rrs) collected in 2018 to correct the hue angle and verify the Sentinel-2 images algorithm of FUI by in situ FUI in 2019–2020. The results show that there is a good agreement (R2 = 0.81, RMSE = 1.32, MAPE = 1.25%). Trophic Level Index (TLI) was used to evaluate the eutrophication status. The relationship between the in situ FUI and TLI collected in 2018 was discussed based on the difference in the dominant components of waters, while a number of non-algae suspended solids in the estuaries and coastal waters led to the overestimation of eutrophication based on FUI. The R(560)–R(704) (when FUI is between 11 and 15) and R(665)/R(704) (when FUI is between 19 and 21) was employed to distinguish total suspended matter (TSM)-dominated systems in the FUI-based eutrophication assessment. Based on the analysis, a new approach to assessing the eutrophication of coastal waters in Liaodong Bay was developed, which proved to have good accuracy by the field data in 2019 and 2020 (accuracy is 79%). Finally, we used Sentinel-2 images from Google Earth from 2019 to 2020 and locally processed data from 2018 to analyze the FUI spatial distribution and spatial and temporal statistics of the trophic status in the northern Liaodong Bay. The results show that the northern Liaodong Bay always presented the distribution characteristics of high inshore and low outside, high in the southeast and low in the northwest. The nutrient status is the worst in spring and summer.


Sign in / Sign up

Export Citation Format

Share Document