Analysis of molten metal spreading and solidification behaviors utilizing moving particle full-implicit method

Author(s):  
Ryo Yokoyama ◽  
Masahiro Kondo ◽  
Shunichi Suzuki ◽  
Koji Okamoto
2018 ◽  
Vol 10 (4) ◽  
pp. 159-169
Author(s):  
Zhu Yue ◽  
Jiang Shengyao ◽  
Yang Xingtuan ◽  
Duan Riqiang

The moving particle semi-implicit method is a meshless particle method for incompressible fluid and has proven useful in a wide variety of engineering applications of free-surface flows. Despite its wide applicability, the moving particle semi-implicit method has the defects of spurious unphysical pressure oscillation. Three various divergence approximation formulas, including basic divergence approximation formula, difference divergence approximation formula, and symmetric divergence approximation formula are proposed in this paper. The proposed three divergence approximation formulas are then applied for discretization of source term in pressure Poisson equation. Two numerical tests, including hydrostatic pressure problem and dam-breaking problem, are carried out to assess the performance of different formulas in enhancing and stabilizing the pressure calculation. The results demonstrate that the pressure calculated by basic divergence approximation formula and difference divergence approximation formula fluctuates severely. However, application of symmetric divergence approximation formula can result in a more accurate and stabilized pressure.


2011 ◽  
Vol 1 (32) ◽  
pp. 6 ◽  
Author(s):  
Eizo Nakaza ◽  
Tsunakiyo Iribe ◽  
Muhammad Abdur Rouf

The paper aims to simulate Tsunami currents around moving and fixed structures using the moving-particle semi-implicit method. An open channel with four different sets of structures is employed in the numerical model. The simulation results for the case with one structure indicate that the flow around the moving structure is faster than that around the fixed structure. The flow becomes more complex for cases with additional structures.


Author(s):  
Rida S. N. Mahmudah ◽  
Masahiro Kumabe ◽  
Takahito Suzuki ◽  
LianCheng Guo ◽  
Koji Morita ◽  
...  

Understanding the freezing behavior of molten metal in flow channels is of importance for severe accident analysis of liquid metal reactors. In order to simulate its fundamental behavior, a 3D fluid dynamics code was developed using Finite Volume Particle (FVP) method, which is one of the moving particle methods. This method, which is fully Lagrangian particle method, assumes that each moving particle occupies certain volume. The governing equations that determine the phase change process are solved by discretizing its gradient and Laplacian terms with the moving particles. The motions of each particle and heat transfer between particles are calculated through interaction with its neighboring particles. A series of experiments for fundamental freezing behavior of molten metal during penetration on to a metal structure was also performed to provide data for the validation of the developed code. The comparison between simulation and experimental results indicates that the present 3D code using the FVP method can successfully reproduce the observed freezing process such as molten metal temperature profile, frozen molten metal shape and its penetration length on the metal structure.


Sign in / Sign up

Export Citation Format

Share Document