Transcriptome analysis of salt stress response in halophyte Atriplex centralasiatica leaves

2019 ◽  
Vol 42 (1) ◽  
Author(s):  
Yan Yao ◽  
Xuejie Zhang ◽  
Ning Wang ◽  
Yishuai Cui ◽  
Luoyan Zhang ◽  
...  
2019 ◽  
Vol 31 (5) ◽  
pp. 1851-1862 ◽  
Author(s):  
Jie Zhou ◽  
Jing Huang ◽  
Xueyao Tian ◽  
Jiwei Zheng ◽  
Xudong He

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12492
Author(s):  
Xun Liu ◽  
Xinxia Yang ◽  
Bin Zhang

Salinity is one of the major abiotic stress that limits crop growth and productivity. We investigated the transcriptomes of salt-treated soybean seedlings versus a control using RNA-seq to better understand the molecular mechanisms of the soybean (Glycine max L.) response to salt stress. Transcriptome analysis revealed 1,235 differentially expressed genes (DEGs) under salt stress. Several important pathways and key candidate genes were identified by KEGG enrichment. A total of 116 differentially expressed transcription factors (TFs) were identified, and 17 TFs were found to belong to MYB families. Phylogenetic analysis revealed that these TFs may be involved in salt stress adaptation. Further analysis revealed that GmMYB46 was up-regulated by salt and mannitol and was localized in the nucleus. The salt tolerance of transgenic Arabidopsis overexpressing GmMYB46 was significantly enhanced compared to wild-type (WT). GmMYB46 activates the expression of salt stress response genes (P5CS1, SOD, POD, NCED3) in Arabidopsis under salt stress, indicating that the GmMYB46 protein mediates the salt stress response through complex regulatory mechanisms. This study provides information with which to better understand the molecular mechanism of salt tolerance in soybeans and to genetically improve the crop.


2019 ◽  
Vol 7 (3) ◽  
pp. 378-392 ◽  
Author(s):  
Qiaoling Luo ◽  
Wan Teng ◽  
Shuang Fang ◽  
Hongwei Li ◽  
Bin Li ◽  
...  

Author(s):  
Motoaki Seki ◽  
Taishi Umezawa ◽  
Jong-Myong Kim ◽  
Akihiro Matsui ◽  
Taiko Kim To ◽  
...  

2021 ◽  
Vol 329 ◽  
pp. 180-191
Author(s):  
Ulkar İbrahimova ◽  
Pragati Kumari ◽  
Saurabh Yadav ◽  
Anshu Rastogi ◽  
Michal Antala ◽  
...  

BMC Genomics ◽  
2012 ◽  
Vol 13 (1) ◽  
pp. 215 ◽  
Author(s):  
Guido Mastrobuoni ◽  
Susann Irgang ◽  
Matthias Pietzke ◽  
Heike E Aßmus ◽  
Markus Wenzel ◽  
...  

2007 ◽  
Vol 27 (22) ◽  
pp. 7771-7780 ◽  
Author(s):  
Paul E. Verslues ◽  
Giorgia Batelli ◽  
Stefania Grillo ◽  
Fernanda Agius ◽  
Yong-Sig Kim ◽  
...  

ABSTRACT SOS2, a class 3 sucrose-nonfermenting 1-related kinase, has emerged as an important mediator of salt stress response and stress signaling through its interactions with proteins involved in membrane transport and in regulation of stress responses. We have identified additional SOS2-interacting proteins that suggest a connection between SOS2 and reactive oxygen signaling. SOS2 was found to interact with the H2O2 signaling protein nucleoside diphosphate kinase 2 (NDPK2) and to inhibit its autophosphorylation activity. A sos2-2 ndpk2 double mutant was more salt sensitive than a sos2-2 single mutant, suggesting that NDPK2 and H2O2 are involved in salt resistance. However, the double mutant did not hyperaccumulate H2O2 in response to salt stress, suggesting that it is altered signaling rather than H2O2 toxicity alone that is responsible for the increased salt sensitivity of the sos2-2 ndpk2 double mutant. SOS2 was also found to interact with catalase 2 (CAT2) and CAT3, further connecting SOS2 to H2O2 metabolism and signaling. The interaction of SOS2 with both NDPK2 and CATs reveals a point of cross talk between salt stress response and other signaling factors including H2O2.


Sign in / Sign up

Export Citation Format

Share Document