comparative transcriptome analysis
Recently Published Documents


TOTAL DOCUMENTS

826
(FIVE YEARS 396)

H-INDEX

40
(FIVE YEARS 8)

2022 ◽  
Vol 12 ◽  
Author(s):  
Jun Ma ◽  
Tianliu Zhang ◽  
Wenxiang Wang ◽  
Yan Chen ◽  
Wentao Cai ◽  
...  

Gayal and yak are well adapted to the local high-altitude environments, yet the transcriptional regulation difference of the plateau environment among them remains obscure. Herein, cross-tissue and cross-species comparative transcriptome analysis were performed for the six hypoxia-sensitive tissues from gayal, yak, and cattle. Gene expression profiles for all single-copy orthologous genes showed tissue-specific expression patterns. By differential expression analysis, we identified 3020 and 1995 differentially expressed genes (DEGs) in at least one tissue of gayal vs. cattle and yak vs. cattle, respectively. Notably, we found that the adaptability of the gayal to the alpine canyon environment is highly similar to the yak living in the Qinghai-Tibet Plateau, such as promoting red blood cell development, angiogenesis, reducing blood coagulation, immune system activation, and energy metabolism shifts from fatty acid β-oxidation to glycolysis. By further analyzing the common and unique DEGs in the six tissues, we also found that numerous expression regulatory genes related to these functions are unique in the gayal and yak, which may play important roles in adapting to the corresponding high-altitude environment. Combined with WGCNA analysis, we found UQCRC1, COX5A are the shared differentially expression hub genes related to the energy supply of myocardial contraction in the heart-related modules of gayal and yak, and CAPS is a shared differentially hub gene among the hub genes of the lung-related module, which is related to pulmonary artery smooth muscle contraction. Additionally, EDN3 is the unique differentially expression hub gene related to the tracheal epithelium and pulmonary vasoconstriction in the lung of gayal. CHRM2 is a unique differentially expression hub gene that was identified in the heart of yak, which has an important role in the autonomous regulation of the heart. These results provide a basis for further understanding the complex transcriptome expression pattern and the regulatory mechanism of high-altitude domestication of gayal and yak.


Foods ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 107
Author(s):  
Zecheng Jiang ◽  
Rui Li ◽  
Yue Tang ◽  
Ziyu Cheng ◽  
Minjie Qian ◽  
...  

Postharvest anthracnose, caused by the fungus Colletotrichum gloeosporioides, is one of the most important postharvest diseases of mangoes worldwide. Bacillus siamensis (B. siamensis), as a biocontrol bacteria, has significant effects on inhibiting disease and improving the quality of fruits and vegetables. In this study, pre-storage application of B. siamensis significantly induced disease resistance and decreased disease index (DI) of stored mango fruit. To investigate the induction mechanisms of B. siamensis, comparative transcriptome analysis of mango fruit samples during the storage were established. In total, 234,808 unique transcripts were assembled and 56,704 differentially expressed genes (DEGs) were identified by comparative transcriptome analysis. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEGs showed that most of the DEGs involved in plant-pathogen interaction, plant hormone signal transduction, and biosynthesis of resistant substances were enriched. Fourteen DEGs related to disease-resistance were validated by qRT-PCR, which well corresponded to the FPKM value obtained from the transcriptome data. These results indicate that B. siamensis treatment may act to induce disease resistance of mango fruit by affecting multiple pathways. These findings not only reveal the transcriptional regulatory mechanisms that govern postharvest disease, but also develop a biological strategy to maintain quality of post-harvest mango fruit.


Sign in / Sign up

Export Citation Format

Share Document