Development of an efficient in-planta Agrobacterium-mediated transformation method for Iranian purslane (Portulaca oleracea L.) using sonication and vacuum infiltration

2021 ◽  
Vol 43 (2) ◽  
Author(s):  
Behnam Sedaghati ◽  
Raheem Haddad ◽  
Mojgan Bandehpour
2017 ◽  
Vol 53 (No. 4) ◽  
pp. 133-143 ◽  
Author(s):  
M. Niazian ◽  
S.A. Sadat Noori ◽  
P. Galuszka ◽  
S.M.M. Mortazavian

Gene transformation can be done in direct and indirect (Agrobacterium-mediated) ways. The most efficient method of gene transformation to date is Agrobacterium-mediated method. The main problem of Agrobacterium-method is that some plant species and mutant lines are recalcitrant to regeneration. Requirements for sterile conditions for plant regeneration are another problem of Agrobacterium-mediated transformation. Development of genotype-independent gene transformation method is of great interest in many plants. Some tissue culture-independent Agrobacterium-mediated gene transformation methods are reported in individual plants and crops. Generally, these methods are called in planta gene transformation. In planta transformation methods are free from somaclonal variation and easier, quicker, and simpler than tissue culture-based transformation methods. Vacuum infiltration, injection of Agrobacterium culture to plant tissues, pollen-tube pathway, floral dip and floral spray are the main methods of in planta transformation. Each of these methods has its own advantages and disadvantages. Simplicity and reliability are the primary reasons for the popularity of the in planta methods. These methods are much quicker than regular tissue culture-based Agrobacterium-mediated gene transformation and success can be achieved by non-experts. In the present review, we highlight all methods of in planta transformation comparing them with regular tissue culture-based Agrobacterium-mediated transformation methods and then recently successful transformations using these methods are presented.


2018 ◽  
Vol 22 ◽  
pp. 293-298
Author(s):  
S. I. Mykhalska ◽  
A. G. Komisarenko ◽  
V. M. Kurchii ◽  
O. M. Tishchenko

Aim. To optimize the agrobacterium-mediated method of winter wheat transformation (Triticum aestivum L.); to select the conditions and period of inoculation to effectively transfer the genes during pollination. Methods. Agrobacterium-mediated in planta genetic transformation of winter wheat (Triticum aestivum L.) during pollination. Results. The conditions for agrobacterium-mediated transformation method of winter wheat during natural (frequency pollination was 1 %) and non-natural (frequency pollination was 4 %) pollination were defined. Conclusions. The possibility of integrating transgenes into the genome of winter wheat plants by the method of Agrobacterium-mediated transformation in planta in the process of forced and natural pollination is demonstrated. It is found that the transformation efficiency to a large extent depends on the plant genotype and the method of carrying out the transformation procedure. The selection of transgenic plants under water deficit conditions allowed to identify the plants with functional transgene. The signs of functioning transgene have been remaining in the next generation of genetically modified winter wheat. Keywords: Triticum aestivum L., Agrobacterium-mediated transformation in planta, transgenic plants, seeds.


2021 ◽  
Vol 28 ◽  
pp. 66-71
Author(s):  
O. V. Dubrovna ◽  
L. V. Slivka

Aim. Optimization of conditions for genetic transformation of new promising genotypes of winter bread wheat (T. aestivum L.) by in planta method. Methods. Agrobacterium-mediated transformation by in planta method using the strain AGL0 and vector construct pBi2E. Results. The influence of air temperature, optical density of cells of agrobacterial suspension, inoculation day and composition of inoculation medium on the frequency of obtaining transgenic plants of new winter wheat genotypes was studied. The dependence of the frequency obtaining of transgenic plants from environmental conditions, in particular temperature, has been established. It was found that the temperature regime of 20-22°C provided the largest number (4.8%) of wheat transformants, and when the temperature is reduced to 16-18°C there is a decrease in the efficiency of T-DNA transfer into the plant genome and the lowest frequency of transformation (0.7%). Conclusions. The largest number of transformants was obtained using a inoculation medium without sucrose, the optical density of cells of the agrobacterial suspension of 0.6 op.od. and inoculation on the third day after castration of ears. Keywords: T. aestivum, Agrobacterium-mediated transformation in planta, optimization of conditions.


2005 ◽  
Vol 105 (3) ◽  
pp. 359-371 ◽  
Author(s):  
P.O.M. Acereto-Escoffié ◽  
B.H. Chi-Manzanero ◽  
S. Echeverría-Echeverría ◽  
R. Grijalva ◽  
A. James Kay ◽  
...  

2011 ◽  
Vol 30 (12) ◽  
pp. 2281-2292 ◽  
Author(s):  
Souvika Bakshi ◽  
Ayan Sadhukhan ◽  
Sagarika Mishra ◽  
Lingaraj Sahoo

Sign in / Sign up

Export Citation Format

Share Document