vacuolar acidification
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 11)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Meng Yang ◽  
Asigul Ismayil ◽  
Zhihao Jiang ◽  
Yan Wang ◽  
Xiyin Zheng ◽  
...  

2021 ◽  
Author(s):  
My-Hang Huynh ◽  
Vern B. Carruthers

The Toxoplasma gondii lytic cycle is a repetition of host cell invasion, replication, egress, and re-invasion into the next host cell. While the molecular players involved in egress have been studied in greater detail in recent years, the signals and pathways for triggering egress from the host cell have not been fully elucidated. A perforin-like protein, PLP1, has been shown to be necessary for permeabilizing the parasitophorous vacuole (PV) membrane or exit from the host cell. In vitro studies indicated that PLP1 is most active in acidic conditions, and indirect evidence using superecliptic pHluorin indicated that the PV pH drops prior to parasite egress. Using ratiometric pHluorin, a GFP variant that responds to changes in pH with changes in its bimodal excitation spectrum peaks, allowed us to directly measure the pH in the PV prior to and during egress by live-imaging microscopy. A statistically significant change was observed in PV pH during egress in both wild-type RH and Δplp1 vacuoles compared to DMSO-treated vacuoles. Interestingly, if parasites are chemically paralyzed, a pH drop is still observed in RH but not in Δplp1 tachyzoites. This indicates that the pH drop is dependent on the presence of PLP1 or motility. Efforts to determine transporters, exchangers, or pumps that could contribute to the drop in PV pH identified two formate-nitrite transporters (FNTs). Auxin-induced conditional knockdown and knockouts of FNT1 and FNT2 reduced the levels of lactate and pyruvate released by the parasites and lead an abatement of vacuolar acidification. While additional transporters and molecules are undoubtedly involved, we provide evidence of a definitive reduction in vacuolar pH associated with induced and natural egress and characterize two transporters that contribute to the acidification.


2021 ◽  
Vol 22 (11) ◽  
pp. 5756
Author(s):  
Purity N. Kipanga ◽  
Liesbeth Demuyser ◽  
Johannes Vrijdag ◽  
Elja Eskes ◽  
Petra D’hooge ◽  
...  

Polygodial is a “hot” peppery-tasting sesquiterpenoid that was first described for its anti-feedant activity against African armyworms. Using the haploid deletion mutant library of Saccharomyces cerevisiae, a genome-wide mutant screen was performed to shed more light on polygodial’s antifungal mechanism of action. We identified 66 deletion strains that were hypersensitive and 47 that were highly resistant to polygodial treatment. Among the hypersensitive strains, an enrichment was found for genes required for vacuolar acidification, amino acid biosynthesis, nucleosome mobilization, the transcription mediator complex, autophagy and vesicular trafficking, while the resistant strains were enriched for genes encoding cytoskeleton-binding proteins, ribosomal proteins, mitochondrial matrix proteins, components of the heme activator protein (HAP) complex, and known regulators of the target of rapamycin complex 1 (TORC1) signaling. WE confirm that polygodial triggers a dose-dependent vacuolar alkalinization and that it increases Ca2+ influx and inhibits glucose-induced Ca2+ signaling. Moreover, we provide evidence suggesting that TORC1 signaling and its protective agent ubiquitin play a central role in polygodial resistance, suggesting that they can be targeted by polygodial either directly or via altered Ca2+ homeostasis.


2021 ◽  
Author(s):  
Goldie Libby Sherr ◽  
Chang-Hui Shen

Exposure of the yeast Saccharomyces cerevisiae to environmental stress can influence cell growth, physiology and differentiation, and thus result in a cell’s adaptive response. During the course of an adaptive response, the yeast vacuoles play an important role in protecting cells from stress. Vacuoles are dynamic organelles that are similar to lysosomes in mammalian cells. The defect of a lysosome’s function may cause various genetic and neurodegenerative diseases. The multi-subunit V-ATPase is the main regulator for vacuolar function and its activity plays a significant role in maintaining pH homeostasis. The V-ATPase is an ATP-driven proton pump which is required for vacuolar acidification. It has also been demonstrated that phospholipid biosynthetic genes might influence vacuolar morphology and function. However, the mechanistic link between phospholipid biosynthetic genes and vacuolar function has not been established. Recent studies have demonstrated that there is a regulatory role of Pah1p, a phospholipid biosynthetic gene, in V-ATPase disassembly and activity. Therefore, in this chapter we will use Saccharomyces cerevisiae as a model to discuss how Pah1p affects V-ATPase disassembly and activity and how Pah1p negatively affect vacuolar function. Furthermore, we propose a hypothesis to describe how Pah1p influences vacuolar function and programmed cell death through the regulation of V-ATPase.


2020 ◽  
Vol 11 ◽  
Author(s):  
Jagadeesh Sundaramoorthy ◽  
Gyu Tae Park ◽  
Jeong-Dong Lee ◽  
Jeong Hoe Kim ◽  
Hak Soo Seo ◽  
...  

The determination of flower color mainly depends on the anthocyanin biosynthesis pathway and vacuolar pH; however, unlike the former, the mechanism of vacuolar acidification in soybean remains uncharacterized at the molecular level. To investigate this mechanism, we isolated four recessive purple–blue EMS-induced flower mutants from the purple flower soybean cultivar, Pungsannamul. The petals of all the mutants had increased pH compared with those of wild Pungsannamul. One of the mutants had a single nucleotide substitution in GmPH4, a regulator gene encoding an MYB transcription factor, and the substitution resulted in a premature stop codon in its first exon. The other three mutants had nucleotide substitutions in GmPH5, a single new gene that we identified by physical mapping. It corresponds to Glyma.03G262600 in chromosome 3 and encodes a proton pump that belongs to the P3A-ATPase family. The substitutions resulted in a premature stop codon, which may be a defect in the ATP-binding capacity of GmPH5 and possibly a catalytic inefficiency of GmPH5. The result is consistent with their genetic recessiveness as well as the high pH of mutant petals, suggesting that GmPH5 is directly involved in vacuolar acidification. We also found that the expression of GmPH5 and several putative “acidifying” genes in the gmph4 mutant was remarkably reduced, indicating that GmPH4 may regulate the genes involved in determining the vacuolar pH of soybean petals.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Quan-Yan Zhang ◽  
Kai-Di Gu ◽  
Jia-Hui Wang ◽  
Jian-Qiang Yu ◽  
Xiao-Fei Wang ◽  
...  

2020 ◽  
Vol 183 (2) ◽  
pp. 750-764 ◽  
Author(s):  
Quan-Yan Zhang ◽  
Kai-Di Gu ◽  
Lailiang Cheng ◽  
Jia-Hui Wang ◽  
Jian-Qiang Yu ◽  
...  

2019 ◽  
Author(s):  
Quan-Yan Zhang ◽  
Kai-Di Gu ◽  
Lailiang Cheng ◽  
Jia-Hui Wang ◽  
Jian-Qiang Yu ◽  
...  

AbstractExcessive application of nitrate, an essential macronutrient and a signal regulating diverse physiological processes, decreases malate accumulation in apple fruit, but the underlying mechanism remains poorly understood. Here, we show that an apple BTB/TAZ protein MdBT2 is involved in regulating malate accumulation and vacuolar pH in response to nitrate. In vitro and in vivo assays indicate that MdBT2 interacts directly with and ubiquitinates a bHLH transcription factor, MdCIbHLH1, via the ubiquitin/26S proteasome pathway in response to nitrate. This ubiquitination results in the degradation of MdCIbHLH1 protein and reduces the transcription of MdCIbHLH1-targeted genes involved in malate accumulation and vacuolar acidification including MdVHA-A encoding a vacuolar H+-ATPase gene, and MdVHP1 encoding a vacuolar H+-pyrophosphatase gene, as well as MdALMT9 encoding a aluminum-activated malate transporter gene. A series of transgenic analyses in apple materials including fruits, plantlets and calli demonstrate that MdBT2 controls nitrate-mediated malate accumulation and vacuolar pH at least partially, if not completely, via regulating the MdCIbHLH1 protein level. Taken together, these findings reveal that MdBT2 regulates the stability of MdCIbHLH1 via ubiquitination in response to nitrate, which in succession transcriptionally reduces the expression of malate-associated genes, thereby controlling malate accumulation and vacuolar acidification in apples under high nitrate supply.


2019 ◽  
Vol 294 (20) ◽  
pp. 8273-8285
Author(s):  
Michiko Abe ◽  
Mayu Saito ◽  
Ayana Tsukahara ◽  
Shuka Shiokawa ◽  
Kazuma Ueno ◽  
...  

Vacuolar-type H+-ATPase (V-ATPase) is a highly conserved proton pump responsible for acidification of intracellular organelles and potential drug target. It is a multisubunit complex comprising a cytoplasmic V1 domain responsible for ATP hydrolysis and a membrane-embedded Vo domain that contributes to proton translocation across the membrane. Saccharomyces cerevisiae V-ATPase is composed of 14 subunits, deletion of any one of which results in well-defined growth defects. As the structure of V-ATPase and the function of each subunit have been well-characterized in yeast, this organism has been recognized as a preferred model for studies of V-ATPases. In this study, to assess the functional relatedness of the yeast and human V-ATPase subunits, we investigated whether human V-ATPase subunits can complement calcium- or pH-sensitive growth, acidification of the vacuolar lumen, assembly of the V-ATPase complex, and protein sorting in yeast mutants lacking the equivalent yeast genes. These assessments revealed that 9 of the 13 human V-ATPase subunits can partially or fully complement the function of the corresponding yeast subunits. Importantly, sequence similarity was not necessarily correlated with functional complementation. We also found that besides all Vo domain subunits, the V1 F subunit is required for proper assembly of the Vo domain at the endoplasmic reticulum. Furthermore, the human H subunit fully restored the level of vacuolar acidification, but only partially rescued calcium-sensitive growth, suggesting a specific role of the H subunit in V-ATPase activity. These findings provide important insights into functional homologies between yeast and human V-ATPases.


Sign in / Sign up

Export Citation Format

Share Document