Is ploidy status related to growth form? Insights from the alien flora of Kashmir Himalaya

2021 ◽  
Vol 43 (12) ◽  
Author(s):  
Mudasir A. Dar ◽  
Afshana ◽  
Gowher A. Wani ◽  
Manzoor A. Shah ◽  
Zafar A. Reshi
2006 ◽  
Vol 9 (3) ◽  
pp. 269-292 ◽  
Author(s):  
Anzar Ahmad Khuroo ◽  
Irfan Rashid ◽  
Zafar Reshi ◽  
G. H. Dar ◽  
B. A. Wafai
Keyword(s):  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 517a-517
Author(s):  
Eric L. Zeldin ◽  
Rodney A. Serres ◽  
Brent H. McCown

`Stevens' cranberry was genetically engineered to confer tolerance to the broad spectrum herbicide glufosinate. Initially, herbicide tolerance was verified by spraying greenhouse plants with the commercial formulation Liberty. Although one transformant showed significant tolerance, the tolerance level was below that required to kill goldenrod, a common weed of cranberry beds. This transformant was propagated and the plants established outdoors in a coldframe, yielding a growth form more typical of field-grown plants than that of greenhouse-grown plants. These plants, as well as untransformed cranberry and goldenrod plants, were sprayed with various levels of the herbicide. The transformed plants were not killed at glufosinate concentrations up to 1000 ppm, although delayed growth did occur. Some runner tip injury was observed at 500 ppm as well as widespread shoot tip death at higher levels. The above-ground parts of goldenrod plants were killed at 400 ppm with significant injury at 200 ppm. Untransformed cranberry plants were killed at 300 ppm and had extensive tip death even at 100 ppm. Transformed cranberry plants with confirmed “field” tolerance were re-established in the greenhouse and new vegetative growth was forced. When these plants were sprayed with glufosinate, significant shoot tip injury was observed at levels as low as 100 ppm. The degree of herbicide tolerance of transformed cranberry appears to be modulated by the growth environment, which may affect the expression of the inserted genes or the physiological sensitivity of the impacted tissues.


Author(s):  
Karen J. Esler ◽  
Anna L. Jacobsen ◽  
R. Brandon Pratt

The archetypal shrub type that dominates most of the regions that experience mediterranean-type climate (MTC) is an evergreen shrub with thick and leathery leaves (sclerophyllous). The occurrence of large stands of such shrubs in all MTC regions led early biogeographers to hypothesize that the MTC selects for this growth form and leaf type and that this had led to convergent evolution (see Chapters 1 and 2). This hypothesis has received considerable research interest and continues to be examined. In this chapter we consider the structure and physiology of these archetypal MTC region shrub species and examine evidence for convergent evolution in their structure and function. We also assess the key adaptive traits that enable the shrub species that compose mediterranean-type vegetation (MTV) communities to thrive in MTC regions.


Author(s):  
Mohd Afsahul Kalam ◽  
Akhtar H. Malik ◽  
Aijaz Hassan Ganie ◽  
Tariq Ahmad Butt

Abstract Podophyllum hexandrum Royle [=Sinopodophyllum hexandrum (Royle) T.S. Ying] is an important, endemic medicinal plant species of Himalaya. It is used in Unani System of Medicine under the name of ‘Papra’. The drug was not mentioned in previous literatures, but the first time it introduced in Unani Medicine by a great scholar Hakim Najmul Ghani. He has mentioned its uses and benefits in his classical book Khazainul Advia. In Unani Medicine the plant species has been used to treat various ailments like constipation, fever, jaundice, liver disorders, syphilis, diseases of lymph glands etc. In Kashmir Himalaya it is used to treat various diseases by local medicinemen, but now it is listed in rare drugs. Various pharmacological studies have been done such as antioxidant, antimicrobial, anti-inflammatory, antifungal, radio-protective etc., recently it has also been reported that podophyllotoxin or podophyllin can be used to treat some forms of cancers also.


Author(s):  
Diego Pires Ferraz Trindade ◽  
Meelis Pärtel ◽  
Carlos Pérez Carmona ◽  
Tiina Randlane ◽  
Juri Nascimbene

AbstractMountains provide a timely opportunity to examine the potential effects of climate change on biodiversity. However, nature conservation in mountain areas have mostly focused on the observed part of biodiversity, not revealing the suitable but absent species—dark diversity. Dark diversity allows calculating the community completeness, indicating whether sites should be restored (low completeness) or conserved (high completeness). Functional traits can be added, showing what groups should be focused on. Here we assessed changes in taxonomic and functional observed and dark diversity of epiphytic lichens along elevational transects in Northern Italy spruce forests. Eight transects (900–1900 m) were selected, resulting in 48 plots and 240 trees, in which lichens were sampled using four quadrats per tree (10 × 50 cm). Dark diversity was estimated based on species co-occurrence (Beals index). We considered functional traits related to growth form, photobiont type and reproductive strategy. Linear and Dirichlet regressions were used to examine changes in taxonomic metrics and functional traits along gradient. Our results showed that all taxonomic metrics increased with elevation and functional traits of lichens differed between observed and dark diversity. At low elevations, due to low completeness and harsh conditions, both restoration and conservation activities are needed, focusing on crustose species. Towards high elevations, conservation is more important to prevent species pool losses, focusing on macrolichens, lichens with Trentepohlia and sexual reproduction. Finally, dark diversity and functional traits provide a novel tool to enhance nature conservation, indicating particular threatened groups, creating windows of opportunities to protect species from both local and regional extinctions.


Author(s):  
Ali Omer ◽  
Maha Kordofani ◽  
Haytham H. Gibreel ◽  
Petr Pyšek ◽  
Mark van Kleunen

AbstractStudies on plant invasions depend on local and regional checklists of the alien flora. However, global overview studies have shown that some regions, including many African countries, remain understudied in this regard. To contribute to filling this gap, here we present the first checklist of alien plants of Sudan and South Sudan (the Sudans). We analysed the taxonomic and geographical composition of the species on this list. Our result show that of the 113 alien species in Sudans (99 in Sudan and 59 in South Sudan), 92 (81.4%) are naturalized and 21 (18.6%) are just casual aliens. The number of naturalized species represent 2.2% of the total flora of the Sudans (4096). The alien species belong to 44 families and 85 genera, and many of them are native to Southern America and Northern America (85.8%). Annual and perennial herbs are the prevailing life forms in the alien flora of the Sudans (68.1%), and, among the casual species, perennial herbs are underrepresented whereas woody tree species are over-represented. Alien plants of the Sudans are mostly used for medicinal and environmental purposes globally. The naturalized plants predominantly occur in man-made disturbed habitats, such as agricultural and ruderal habitats. This first overview of the alien flora of the Sudans should stimulate further research and recording of the alien flora to better understand the drivers and consequences of alien plants in the Sudans.


2021 ◽  
Vol 125 ◽  
pp. 107447 ◽  
Author(s):  
Rehana Rasool ◽  
Abida Fayaz ◽  
Mifta ul Shafiq ◽  
Harmeet Singh ◽  
Pervez Ahmed

Sign in / Sign up

Export Citation Format

Share Document