A Simplified Methodology to Measure the Characteristic Curvature (Cc) of Alkyl Ethoxylate Nonionic Surfactants

2016 ◽  
Vol 19 (2) ◽  
pp. 249-263 ◽  
Author(s):  
Silvia Zarate-Muñoz ◽  
Felipe Texeira de Vasconcelos ◽  
Khaing Myint-Myat ◽  
Jack Minchom ◽  
Edgar Acosta
2009 ◽  
Vol 46 (5) ◽  
pp. 272-278 ◽  
Author(s):  
E. A. M. Gad ◽  
E. M. S. Azzam ◽  
I. Aiad ◽  
W. I. M. El-azab

HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 607b-607
Author(s):  
W. Tietjen ◽  
P.J. Nitzsche ◽  
W.P. Cowgill ◽  
M.H. Maletta ◽  
S.A. Johnston

`Market Prize' and `Bravo' cabbage (Brassica oleracea Var. capitata L.), transplanted as peat plug and bareroot plants into a field naturally infested with Plasmodiophora brassicae, Woronin, were treated immediately after planting with a liquid or a granular surfactant. APSA 80™, applied in transplant water, significantly reduced percent clubbing and disease severity index (DSI) compared to control treatments. Miller Soil Surfactant Granular™ did not significantly reduce percent clubbing or DSI. There was a significant effect of cultivar on percent clubbing and DSI. There was no significant effect of transplant type on percent clubbing or DSI. This year's study culminates five years of investigation of surfactants for clubroot control. Specific surfactants have proven to be an effective control of clubroot in cabbage. Chemical names used: nonylphenoxypolyethoxyethanol (APSA 80™); alpha-alkanoic-hydro omega-hydroxy poly (oxyethylene) (Miller Soil Surfactant Granular™).


1999 ◽  
Vol 40 (4-5) ◽  
pp. 99-105 ◽  
Author(s):  
A. Lopez ◽  
G. Ricco ◽  
R. Ciannarella ◽  
A. Rozzi ◽  
A. C. Di Pinto ◽  
...  

Among the activities appointed by the EC research-project “Integrated water recycling and emission abatement in the textile industry” (Contract: ENV4-CT95-0064), the effectiveness of ozone for improving the biotreatability of recalcitrant effluents as well as for removing from them toxic and/or inhibitory pollutants has been evaluated at lab-scale. Real membrane concentrates (pH=7.9; TOC=190 ppm; CDO=595 ppm; BOD5=0 ppm; Conductivity=5,000 μS/cm; Microtox-EC20=34%) produced at Bulgarograsso (Italy) Wastewater Treatment Plant by nanofiltering biologically treated secondary textile effluents, have been treated with ozonated air (O3conc.=12 ppm) over 120 min. The results have indicated that during ozonation, BOD5 increases from 0 to 75 ppm, whereas COD and TOC both decrease by about 50% and 30 % respectively. As for potentially toxic and/or inhibitory pollutants such as dyes, nonionic surfactants and halogenated organics, all measured as sum parameters, removals higher than 90% were achieved as confirmed by the complete disappearance of acute toxicity in the treated streams. The only ozonation byproducts searched for and found were aldehydes whose total amount continuously increased in the first hour from 1.2 up to 11.8 ppm. Among them, formaldehyde, acetaldehyde, glyoxal, propionaldehyde, and butyraldehyde were identified by HPLC.


2013 ◽  
Vol 9 (6) ◽  
pp. 723-729 ◽  
Author(s):  
Faiyaz Shakeel ◽  
Nazrul Haq ◽  
Fars Alanazi ◽  
Ibrahim Alsarra
Keyword(s):  

1988 ◽  
Vol 18 (1) ◽  
pp. 87-96 ◽  
Author(s):  
M. M. Varma ◽  
Dakshesh Patel
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document