Optimal design of functionally graded PmPV/CNT nanocomposite cylindrical tube for purpose of torque transmission

2016 ◽  
Vol 23 (2) ◽  
pp. 362-369 ◽  
Author(s):  
Abolfazl Khalkhali ◽  
Sharif Khakshournia ◽  
Parvaneh Saberi
Author(s):  
I. I. Andrianov ◽  
J. Awrejcewicz ◽  
A.A. Diskovsky

AbstractOptimization of parameters of the corrugated shell aims to achieve its minimum weight while keeping maximum stiffness ability. How an introduction of functionally graded corrugations resulted in improved efficiency of this thin-walled structure is demonstrated. The corrugations are graded varying their pitch. The effect of variation in pitch is studied. Homogenization approach gives explicit expressions to calculate the equivalent shell properties. Then well-elaborate methods of optimal design theory are used. The illustrative examples for hydrostatic load demonstrate a high efficiency of the used method.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 422 ◽  
Author(s):  
Wenshuai Wang ◽  
Hongting Yuan ◽  
Xing Li ◽  
Pengpeng Shi

Functionally graded material (FGM) can optimize the mechanical properties of composites by designing the spatial variation of material properties. In this paper, the stress distribution of functionally graded panel with a central elliptical hole under uniaxial tensile load is analyzed. Based on the inhomogeneity variation and three different gradient directions, the effects of the inhomogeneity on the stress concentration factor and damage factor are discussed. The study results show that when Young’s modulus increases with the distance from the hole, the stress concentration factor decreases compared with that of homogeneous material, and the optimal design of r-FGM is better than that of x-FGM and y-FGM when the tensile load. In addition, when the associated variation of ultimate stress is considered, the choice of scheme to reduce the failure index is related to the strength-modulus exponent ratio. When the strength-modulus exponent ratio is small, the failure index changes with the index of power-law, which means there is an optimal FGM design. But when the strength-modulus exponent ratio is large, the optimal design modulus design is to select a uniform material that maximizes the modulus at each point. These research results have a certain reference value for further in-depth understanding of the inhomogeneous design for FGM.


Sign in / Sign up

Export Citation Format

Share Document