biodegradable composite
Recently Published Documents


TOTAL DOCUMENTS

254
(FIVE YEARS 94)

H-INDEX

33
(FIVE YEARS 5)

2021 ◽  
Vol 44 ◽  
pp. 101352
Author(s):  
Sharmila Patil ◽  
Ashok Kumar Bharimalla ◽  
Archana Mahapatra ◽  
Jyoti Dhakane-Lad ◽  
A. Arputharaj ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
pp. 01-13
Author(s):  
Hélida Cristina Noronha Figueiredo ◽  
Juan Carlos Valdés Serra ◽  
Marcus Vinicius Ribeiro e Souza

The study aimed to produce biodegradable composite materials from sugar cane straw and castor oil-based resin. The fibers were used in two sizes: 0 <fibers ≤4.27mm and 4.27 <fibers <10mm; resin in the proportion of 10%, 15% and 20%. The preparation method was carried out according to NBR 14810-2: 2018, using the compression molding technique at room temperature. Physical assays were carried out: moisture and swelling; mechanical assays: static bending and compression. The morphological assay was evaluated: scanning electron microscopy; and the composite biodegradability assay, over a three-month period. In order to validate the results, the statistic graphic was performed with significance at 5% by the F test, compared to the means by the Scott-knott test of the physical and mechanical treatments. The results showed that the values of the physical assays have met the minimum limits established by the standard, resulting in 8.72% swelling of the composite material. In the mechanical assay, the composite with less fiber and 20% resin was more resistant in the bend test with a capacity of 3.69 N/mm², and in the compression assay with 2.98 N/mm². The morphological analysis showed a wide interaction at the matrix/reinforcement interface. The biodegradation assay showed that over the months the composites started to lose weight, which shows the improvement of the degradation. Therefore, the composite produced has great potential in the market, it is considered biodegradable and of low cost compared to composites produced from synthetic fibers.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6915
Author(s):  
Veronika V. Smirnova ◽  
Denis N. Chausov ◽  
Dmitriy A. Serov ◽  
Valery A. Kozlov ◽  
Petr I. Ivashkin ◽  
...  

A method for obtaining a stable colloidal solution of silver oxide nanoparticles has been developed using laser ablation. The method allows one to obtain nanoparticles with a monomodal size distribution and a concentration of more than 108 nanoparticles per mL. On the basis of the obtained nanoparticles and the PLGA polymer, a nanocomposite material was manufactured. The manufacturing technology allows one to obtain a nanocomposite material without significant defects. Nanoparticles are not evenly distributed in the material and form domains in the composite. Reactive oxygen species (hydrogen peroxide and hydroxyl radical) are intensively generated on the surfaces of the nanocomposite. Additionally, on the surface of the composite material, an intensive formation of protein long-lived active forms is observed. The ELISA method was used to demonstrate the generation of 8-oxoguanine in DNA on the developed nanocomposite material. It was found that the multiplication of microorganisms on the developed nanocomposite material is significantly decreased. At the same time, the nanocomposite does not inhibit proliferation of mammalian cells. The developed nanocomposite material can be used as an affordable and non-toxic nanomaterial to create bacteriostatic coatings that are safe for humans.


2021 ◽  
Vol 2063 (1) ◽  
pp. 012028
Author(s):  
Zainab A Ali ◽  
Alaa Karem Niamah ◽  
Hannosh Widad Salih

Abstract Lactic acid was isolated by using microbial fermentation in whey media which was carried out by local strain Lactobacillus paraplantarum then polymerized using the acidic medium’s polycondensation method. FTIR and H-NMR were used to characterize the isolated lactic acid monomer and polyalctic acid (PLA), and the results confirmed the chemical structures of the isolated lactic acid and PLA. GPC techniques were used to determine the molecular weight and molecular weight distribution of the prepared PLA; the result showed that the Polydispersity index (PDI) was 2.51. The Biodegradable composite films of poly lactic acid (PLA)/Nano silica powder were prepared by the composite film casting method using dichloromethane as solvent. In contrast, Nano silica was synthesis from hydrolysis of tetra ethoxysilane and was loaded in PLA in 1 to5 wt. %. The films were subjected to a tensile strength study. Thermogravimetric analysis (TGA) and differential thermal analysis (DSC) were used to evaluate PLA. Also, water absorption of the prepared composites was studied, and the result showed that the thermal stability and water absorption of these prepared films were increased with an increasing percentage of Nano silica, while the percentage of crystallinity of the PLA evaluated from DSC was 28 %.


2021 ◽  
Vol 899 ◽  
pp. 715-719
Author(s):  
Amina Vindizheva ◽  
Azamat A. Khashirov ◽  
Khuisein Sapaev ◽  
Alexandr Kalabin ◽  
Muslim A. Mikitaev ◽  
...  

This article presents a scientific review of the literature on biodegradable polymer composite materials based on polyvinyl chloride. We summarized data on the effect of modifiers of natural and synthetic origin on the biodegradability of polyvinyl chloride material. The main methods for studying the biodegradability of polymeric materials are considered.


2021 ◽  
Vol 83 (5) ◽  
pp. 119-127
Author(s):  
Nazri Huzaimi Zakaria ◽  
Ridhwan Jumaidin ◽  
Mohd Adrinata Shaharuzaman ◽  
Mohd Rody Mohamad Zin ◽  
Fudhail Abdul Munir

The awareness to produce biodegradable composite has increased rapidly because of non-toxic and reachable. However, fully biodegradable composite production still low due to the matrix used in the composite is not biodegradable. Thus, this paper presents the study on mechanical and physical properties for the mixtures of corn starch (CS) with different weight percentages of glycerol as thermoplastics corn starch (TPCS) matrix. The selected glycerol contents were at 30, 35 and 40 wt%. The mixtures of CS and different weight percentages of glycerol were made using hot compression moulding at 165°C for 15 minutes to produce the TPCS samples. The mechanical and physical properties were done: the tensile test, hardness test, water absorption test, moisture content test and microstructure analysis under the Scanning Electron Microscopes (SEM). Incorporating 30 wt% loadings of glycerol has increased the tensile strength and hardness. The results show that the addition of higher than 30 wt% loadings of glycerol has decreased the tensile strength and hardness of the TPCS. The physical test results for 30 wt% loadings of glycerol for water absorption test and moisture content show the lowest value than other TPCS samples. However, the density value for all wt% loadings of glycerol does not offer much difference. It reveals that 30 wt% loadings of glycerol in the mixture of CS have shown a good interaction in the TPCS mechanical properties. Based on this finding, the TPCS has huge potential to be used as a matrix to develop a fully biodegradable composite.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Irina N. Vikhareva ◽  
Evgeniya A. Buylova ◽  
Gulnara U. Yarmuhametova ◽  
Guliya K. Aminova ◽  
Aliya K. Mazitova

Plastic is one of the most demanded materials on the planet, and the increasing consumption of which contributes to the accumulation of significant amounts of waste based on it. For this reason, a new approach to the development of these materials has been formed: the production of polymers with constant operational characteristics during the period of consumption and capable of then being destroyed under the influence of environmental factors and being involved in the metabolic processes of natural biosystems. The paper outlines the prerequisites for the development of the field of creating biodegradable composite materials, as well as the main technical solutions for obtaining such polymeric materials. The main current solutions for reducing and regulating the degradation time of polymer materials are presented. The most promising ways of further development of the field of bioplastics production are described. Common types of polymers based on renewable raw materials, composites with their use, and modified materials from natural and synthetic polymers are considered.


Sign in / Sign up

Export Citation Format

Share Document