Numerical investigation of influence of pantograph parameters and train length on aerodynamic drag of high-speed train

2020 ◽  
Vol 27 (4) ◽  
pp. 1334-1350 ◽  
Author(s):  
Zhi-kun Sun ◽  
Tian-tian Wang ◽  
Fan Wu
2021 ◽  
Vol 215 ◽  
pp. 104698
Author(s):  
Xiao-Bai Li ◽  
Xi-Feng Liang ◽  
Zhe Wang ◽  
Xiao-Hui Xiong ◽  
Guang Chen ◽  
...  

2020 ◽  
Vol 16 (1) ◽  
pp. 41-53
Author(s):  
Lu Cai ◽  
Zhen Lou ◽  
Nan Liu ◽  
Chao An ◽  
Jiye Zhang

Author(s):  
Yeongbin Lee ◽  
Minho Kwak ◽  
Kyu Hong Kim ◽  
Dong-Ho Lee

In this study, the aerodynamic characteristics of pantograph system according to the pantograph cover configurations for high speed train were investigated by wind tunnel test. Wind tunnel tests were conducted in the velocity range of 20∼70m/s with scaled experimental pantograph models. The experimental models were 1/4 scaled simplified pantograph system which consists of a double upper arm and a single lower arm with a square cylinder shaped panhead. The experimental model of the pantograph cover is also 1/4 scaled and were made as 4 different configurations. It is laid on the ground plate which modeled on the real roof shape of the Korean high speed train. Using a load cell, the aerodynamic force such as a lift and a drag which were acting on pantograph system were measured and the aerodynamic effects according to the various configurations of pantograph covers were investigated. In addition, the total pressure distributions of the wake regions behind the panhead of the pantograph system were measured to investigate the variations of flow pattern. From the experimental test results, we checked that the flow patterns and the aerodynamic characteristics around the pantograph systems are varied as the pantograph cover configurations. In addition, it is also found that pantograph cover induced to decrease the aerodynamic drag and lift forces. Finally, we proposed the aerodynamic improvement of pantograph cover and pantograph system for high speed train.


Author(s):  
M. Vikraman ◽  
J. Bruce Ralphin Rose ◽  
S. Ganesh Natarajan

The demand for high speed rail networks is rapidly increasing in developing countries like India. One of the major constraints in the design and implementation of high speed train is the braking efficiency with minimum friction losses. Recently, the aerodynamic braking concept has received good attention and it has been incorporated for high speed bullet trains as a testing phase. The braking performance is extremely important to ensure the passenger safety specifically for the trains moving at more than 120[Formula: see text]km/h. In this paper, an Indian train configuration WAP7 (wide gauge AC electric passenger, Class 7) has been assumed with the locomotive and one passenger car. Aerodynamic braking system design is done by opening a spoiler over the train to amplify the aerodynamic drag at high speeds. The magnitude of braking force depends on the position and orientation of the braking spoiler. It creates differential drag forces at various deflection angles to decelerate the trains instantaneously in proportion to the running speeds. Drag created by the braking spoiler is observed numerically with the help of CFD simulation tools for further validation through wind tunnel experiments. Striking aerodynamic results are obtained with and without braking spoilers on the passenger cars and the spoiler at 40[Formula: see text]–50[Formula: see text] orientation makes greater drag coefficient as compared to the other angles.


Sign in / Sign up

Export Citation Format

Share Document