On the correlation between aerodynamic drag and wake flow for a generic high-speed train

2021 ◽  
Vol 215 ◽  
pp. 104698
Author(s):  
Xiao-Bai Li ◽  
Xi-Feng Liang ◽  
Zhe Wang ◽  
Xiao-Hui Xiong ◽  
Guang Chen ◽  
...  
Author(s):  
Yeongbin Lee ◽  
Minho Kwak ◽  
Kyu Hong Kim ◽  
Dong-Ho Lee

In this study, the aerodynamic characteristics of pantograph system according to the pantograph cover configurations for high speed train were investigated by wind tunnel test. Wind tunnel tests were conducted in the velocity range of 20∼70m/s with scaled experimental pantograph models. The experimental models were 1/4 scaled simplified pantograph system which consists of a double upper arm and a single lower arm with a square cylinder shaped panhead. The experimental model of the pantograph cover is also 1/4 scaled and were made as 4 different configurations. It is laid on the ground plate which modeled on the real roof shape of the Korean high speed train. Using a load cell, the aerodynamic force such as a lift and a drag which were acting on pantograph system were measured and the aerodynamic effects according to the various configurations of pantograph covers were investigated. In addition, the total pressure distributions of the wake regions behind the panhead of the pantograph system were measured to investigate the variations of flow pattern. From the experimental test results, we checked that the flow patterns and the aerodynamic characteristics around the pantograph systems are varied as the pantograph cover configurations. In addition, it is also found that pantograph cover induced to decrease the aerodynamic drag and lift forces. Finally, we proposed the aerodynamic improvement of pantograph cover and pantograph system for high speed train.


Author(s):  
M. Vikraman ◽  
J. Bruce Ralphin Rose ◽  
S. Ganesh Natarajan

The demand for high speed rail networks is rapidly increasing in developing countries like India. One of the major constraints in the design and implementation of high speed train is the braking efficiency with minimum friction losses. Recently, the aerodynamic braking concept has received good attention and it has been incorporated for high speed bullet trains as a testing phase. The braking performance is extremely important to ensure the passenger safety specifically for the trains moving at more than 120[Formula: see text]km/h. In this paper, an Indian train configuration WAP7 (wide gauge AC electric passenger, Class 7) has been assumed with the locomotive and one passenger car. Aerodynamic braking system design is done by opening a spoiler over the train to amplify the aerodynamic drag at high speeds. The magnitude of braking force depends on the position and orientation of the braking spoiler. It creates differential drag forces at various deflection angles to decelerate the trains instantaneously in proportion to the running speeds. Drag created by the braking spoiler is observed numerically with the help of CFD simulation tools for further validation through wind tunnel experiments. Striking aerodynamic results are obtained with and without braking spoilers on the passenger cars and the spoiler at 40[Formula: see text]–50[Formula: see text] orientation makes greater drag coefficient as compared to the other angles.


Author(s):  
Benhuai Li ◽  
Zhaijun Lu ◽  
Kaibo Yan ◽  
Sisi Lu ◽  
Lingxiang Kong ◽  
...  

Aluminium honeycomb is a light weight, thin-walled material with a typical multi-cellular construction and a good strength-to-weight ratio. Therefore, aluminium honeycomb can be used as an energy-absorbing device for high-speed trains. Due to its large mass and high operating speed, a high-speed train can generate large impact energy. Thus, an energy-absorbing device with a greater energy absorption capability must be designed for high-speed trains. To reduce the aerodynamic drag, the cross-sectional area of a high-speed train is limited. Therefore, a honeycomb energy-absorbing device should be designed in such a way that it is longer than the traditional energy-absorbing devices; however, this may lead to bending, destruction and uncontrollable deformation of the honeycomb; these factors are not conducive for energy absorption. In this paper, a sleeve structure was designed for high-speed trains, and a crash experiment of the energy-absorbing structure showed that the bending and destruction of the honeycomb energy-absorbing device are effectively suppressed compared with the ordinary honeycomb energy-absorbing structure. Moreover, the fluctuation of the crash force was smaller and the crash force is more stable than the traditional thin-walled energy-absorbing structure. Therefore, the deformation instability problem of the ordinary honeycomb energy-absorbing structure and the crash force fluctuation problem of the traditional thin-walled energy-absorbing structure can be solved. Then, a crash experiment and simulation involving a high-speed train with improved honeycomb energy-absorbing device was carried out, and the results showed that the deformation of the end of the train body was stable and controllable, and the train body deceleration satisfied the collision standard EN15227.


2017 ◽  
Vol 44 (4) ◽  
pp. 89-97 ◽  
Author(s):  
Zhenfeng Wu ◽  
Enyu Yang ◽  
Wangcai Ding

Aerodynamic drag plays an important role in high-speed trains, and how to reduce the aerodynamic drag is one of the most important research subjects related to modern railway systems. This paper investigates a design method for large-scale streamlined head cars of high-speed trains by adopting NURBS theory according to the outer surface characteristics of trains. This method first created the main control lines of the driver cab by inputting control point coordinates; then, auxiliary control lines were added to the main ones. Finally, the reticular region formed by the main control lines and auxiliary ones were filled. The head car was assembled with the driver cab and sightseeing car in a virtual environment. The numerical simulation of train flow field was completed through definition of geometric models, boundary conditions, and space discretization. The calculation results show that the aerodynamic drag of the high-speed train with large-scale streamlined head car decreases by approximately 49.3% within the 50-300 km/h speed range compared with that of the quasi-streamlined high-speed train. This study reveals that the high-speed train with large-scale streamlined head car could achieve the purpose of reducing running aerodynamic drag and saving energy, and aims to provide technical support for the subsequent process design and production control of high-speed train head cars.


Sign in / Sign up

Export Citation Format

Share Document