2011 Joint Rail Conference
Latest Publications


TOTAL DOCUMENTS

66
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Published By ASMEDC

9780791854594, 9780791838938

Author(s):  
Daniel Parent ◽  
David Tyrell ◽  
Karina Jacobsen ◽  
Kristine Severson

In Glendale, California on January 26, 2005, impact with an SUV on the track caused a southbound commuter train to derail, impact a standing freight train, buckle laterally outward, and rake the side of a northbound commuter train. Significant deformation resulted in the front of the southbound train and the side of the northbound train. There were a total of eleven fatalities and over one hundred injuries. This incident was investigated as a part of an ongoing field study of occupant injury in passenger train collisions and derailments currently being conducted by the United States (US) Department of Transportation’s (DOT) Rail Accident Forensic Team in support of the Equipment Safety Research Program of the Federal Railroad Administration (FRA). The Forensic Team determined that the primary causal mechanism of injuries and fatalities in the Glendale incident was the loss of occupied volume of the passenger cars brought about by severe structural deformation.


Author(s):  
Michael Leue ◽  
Carlo Luzzi

The San Pedro Bay Ports of Long Beach and Los Angeles continue to provide vital rail connections to the rest of the country. The Rail Enhancement Program sets forth the rail improvements necessary to maintain performance as cargo volumes grow through the year 2035. Implementation of the Rail Enhancement Program has faced hurdles including environmental permitting, funding and competing stakeholder concerns. Cargo growth eased in the years approaching 2010, but the timing of proposed improvements to the rail infrastructure remains critical and challenging. The Rail Enhancement Program is the result of work over the past ten years. Conditions affecting the program have continued to change since the original Rail Master Planning Study of 2000. Updates to the Master Plan have been performed in 2005 and 2010. These documents provide analyses and recommendations for rail improvements to maintain adequate rail service on the Alameda Corridor and through the Port to its rail yards. In developing the Rail Enhancement Program, simulation is used to understand the impacts of increasing cargo volumes on the rail system and to investigate infrastructure and operating improvements required to address deficiencies and to determine improvements to efficiently handle projected traffic. This paper describes the development process with a summary of the analysis methods, resulting proposed rail projects, implementation process and current status of implementation. The steps of the rail system development process include the following: • Evaluation of existing and proposed rail operations; • Conceptual design of over forty potential rail improvement projects; • Analysis of the capacity of existing and proposed facilities; • Scheduling of project development to meet demand; • Estimation of environmental, community and regional impacts and benefits; • Determination of schedule including environmental permit requirements; • Development of project funding plans; and • Preparation of engineering designs and construction documents. The paper will conclude with a summary of the status of key projects from the Rail Enhancement Program. Implementation of the Rail Enhancement Program has included permitting, funding and design efforts on individual projects. The projects currently under development total $1B out of the overall $2B program. The Rail Enhancement Program provides significant benefits to operating efficiencies, environmental impacts and economic impacts. Implementation has been a challenging effort and illustrates the myriad obstacles facing public infrastructure development.


Author(s):  
David F. Thurston

The main objective in optimizing train control is to eliminate the waist associated with classical design where train separation is determined through the use of “worst case” assumptions that are invariant to the system. In fact, the worst case approach has been in place since the beginning of train control systems. Worst case takes the most conservative approach to the determination of train stopping distance, which is the basis for design of virtually all train control. This leads to stopping distances that could be far more that actually required under the circumstances at the time the train is attempting to brake. Modern train control systems are designed to separate trains in order to provide safety of operation while increasing throughput. Calculations for the minimum distance that separates trains have traditionally been based on the sum of a series of worst case scenarios. The implication was that no train could ever exceed this distance in stopping. This distance is called Safe Braking Distance (SBD). SBD has always been calculated by static parameters that were assumed to be invariant. This is, however, not the case. Parameters such as adhesion, acceleration, weight, and reaction vary over time, location or velocity. Since the worst case is always used in the calculation, inefficiencies result in this methodology which causes degradation in capacity and throughput. This is also true when mixed traffic with different stopping characteristics are present at the same time. The classic theory in train control utilizes a SBD model to describe the characteristics of a stopping train. Since knowledge of these conditions is not known, poor conditions are assumed. A new concept in train control utilizes statistical analysis and estimation to provide knowledge of the conditions. Trains operating along the line utilize these techniques to understand inputs into their SBD calculation. This provides for a SBD calculation on board the train that is the shortest possible that maintains the required level of safety. The new SBD is a prime determinant in systems capacity. Therefore by optimizing SBD as describes, system capacity is also optimized. The system continuously adjusts to changing conditions.


Author(s):  
Patricia Llana ◽  
David Tyrell

The Volpe Center is supporting the Federal Railroad Administration in performing rail passenger equipment crashworthiness research. The overall objective of this research is to develop strategies for improving structural crashworthiness and occupant protection. A field study of passenger train accidents is being conducted to investigate the causal mechanisms of the injuries incurred by train occupants. The investigation of the November 30, 2007 collision in Chicago, IL has provided preliminary data on the structural damage as well as occupant injuries resulting from the impact. This data will be used in simulations to guide the development of crashworthiness strategies.


Author(s):  
Allan M. Zarembski ◽  
James Blaze ◽  
Pradeep Patel

What are some of the practical obstacles to a “shared interests” between a freight railway business and the proposed new higher speed passenger entity? This paper discusses the real “tension” between the two business interests that fund freight trains versus those that support and fund higher speed passenger trains as they attempt to share the same tracks in a safe manner. There are fundamental laws of physics that have to be addressed as the two different sets of equipment are “accommodated” on a shared corridor. This may not always be an easy accommodation between the two commercial parties. One real tension between the two commercial interests involves the physical problem of accommodating two radically different train sets on areas of curved track. For one example, what will be the passenger train required future higher speeds and how will these speeds be accommodated in existing main line tracks with curves varying from 1% to 6% in degrees? How much super elevation will need to be put back into the heretofore freight train tracks? How will the resulting super elevation affect the operation of so called drag or high tonnage slow speed bulk cargo trains? Accommodating such differences in train set types, axle loadings, freight versus passenger train set speeds, requires making detailed choices at the engineering level. These may be shared interests, but they are also variables with far different outcomes by design for the two different business types. The freight railways have spent the last few decades “taking the super elevation out” because it is not needed for the modern and highly efficient freight trains. Now the requirements of the passenger trains may need for it to be replaced. What are the dynamics and fundamental engineering principles at work here? Grade crossings have a safety issue set of interests that likely require such things as “quad” gates and for the highest passenger train speeds even complete grade separation. Track accommodating very high speed passenger trains requires under federal regulations much closer physical property tolerances in gauge width, track alignment, and surface profile. This in turn increases the level of track inspection and track maintenance expenses versus the standard freight operations in a corridor. Fundamentally, how is this all going to be allocated to the two different commercial train users? What will be the equally shared cost and what are examples of the solely allocated costs when a corridor has such different train users? In summary, this paper provides a description of these shared issues and the fundamental trade-offs that the parties must agree upon related to overall track design, track geometry, track curvature, super elevation options, allowed speeds in curves, more robust protection at grade crossings, and the manner in which these changes from the freight only corridors are to be allocated given the resulting much higher track maintenance costs of these to be shared assets.


Author(s):  
Yasutomo Morita ◽  
Kenji Shimizu ◽  
Hirokazu Kato ◽  
Naoki Shibahara ◽  
Toshihiro Yamasaki

This study shows how to measure CO2 emissions caused by railways during its life span from construction to disposal. It is now a common global concern that CO2 reduction is vital for conserving the global environment. Amidst this growing awareness, rail transport has attracted significant attention as an environmentally-friendly transportation mode due to its low emission of CO2 gas. But in many studies the amount of CO2 is calculated only during operation and doesn’t include emissions during the phase of construction of related infrastructure and rolling stocks. Rail transport can not be a truly environmentally-friendly transportation mode if it isn’t proven to emit less gases compared with other modes during a modes whole life cycle. In this paper, we introduce the method to calculate CO2 emission from the construction of infrastructure with the application of Life Cycle Assessment (LCA) and the result of a case study.


Author(s):  
Blaine O. Peterson

This paper discusses general High Speed Rail (HSR) track geometry, construction and maintenance practices and tolerances. The discussion will reference several key international projects and highlight different construction methods and the track geometry assessments used to establish and ensure serviceability of a typical HSR system. Historically, established tighter tolerances of “Express” HSR (i.e. operating speeds greater than 240 km/h or 150 mph) systems have favored the use of slab track systems over ballasted track systems. Slab track systems offer greater inherent stability while ballasted track systems generally require more frequent track geometry assessments and anomaly-correcting surfacing operations. The decisions related to which system to use for a given application involve numerous considerations discussed only briefly in this paper. In many cases, the optimal solution may include both track forms. Rolling stock considerations and their influence on track infrastructure design are considered beyond the scope of this paper. This paper will focus predominantly on two slab track systems widely used in international HSR projects: the Japanese J-slab track system; and the German Rheda slab track system. The French track system will be referenced as the typical ballasted track HSR design. The practices discussed in this paper generally apply to systems which are either primarily or exclusively passenger rail systems. In the U.S., these types of systems will necessarily exclude the systems the Federal Railway Administration (FRA) refers to as “Emerging” or “Regional” HSR systems which include passenger train traffic to share trackage on, what are otherwise considered, primarily freight lines.


Author(s):  
J. G. Rose ◽  
M. C. Trella ◽  
N. K. Agarwal

Layer-elastic, finite-element computer programs are available for performance-based structural design and analysis of railway trackbeds. This paper utilizes the KENTRACK design program. It is possible to consider the fatigue lives of the various layers relative to the imposed wheel loads, tonnages, environmental conditions and other factors. The service lives of the individual components of the trackbed are predicted by damage analysis for various combinations of traffic loadings, accumulated tonnages, subgrade support, and component layer properties and thicknesses. The results are presented graphically. The latest version, KENTRACK 3.0, is utilized. It is coded in C#.NET a popular computer language for achieving accuracy and efficiency. The graphical user interface in the KENTRACK 3.0 provides a technique to analyze trackbeds as structures. It is possible with KENTRACK 3.0 to select individual trackbed layers and associated thicknesses to satisfy roadbed and trackbed performance requirements. In addition, it is possible to performance-rank different track sectional designs based on the relative importance of the particular track section and track type. The types of roadbed and trackbed configurations are selected to meet each of the various performance ranks.


Author(s):  
Mario Iacobacci

This paper aims to clarify issues regarding shared rail corridors from a public policy perspective. It presents an overview of the relationships between the main stakeholders operating trains on North America’s rail networks: the railway companies that own the rail infrastructure and use it to provide freight services to shippers, and the passenger service operators—which are primarily public agencies that pay railway companies for track access and other services required to operate commuter and intercity passenger trains. The issues at stake are of concern to the policy and business community alike, because congestion on railway lines affects commuter rail, intercity passenger trains, and long-distance freight trains. In addition to the obvious economic costs of delays or less-reliable transit times in passenger and freight rail, respectively, adverse environmental and social impacts (e.g., higher accident rates on roadways) arise if either freight or passenger traffic shifts from rail to roadways. An earlier version of this paper was published by the Conference Board of Canada in September 2010.


Author(s):  
Jerry G. Rose

The primary purpose of the highway-railway at-grade crossing is to provide a smooth surface for the safe passage of rubber-tired vehicles across the railroad. The crossing support and surface in the jointly used area represent a significantly expensive unit cost of the highway and railway line. The ideal highway crossing will maintain a smooth surface and stable trackbed for a long period of time. This will reduce costly, frequent disruptions to highway and railway traffic (to adjust the track or renew the surface due to rideability concerns), while concurrently providing improved operating performance and long life. Technology is available for rapidly renewing highway crossings within one day using a panel system with specifically designed layered support and premium materials. The procedure involves complete removal of the old crossing panel and trackbed materials — and replacing them with an asphalt underlayment layer, a pre-compacted ballast layer, a new track panel, and a new crossing surface. A cooperative effort between the local highway agency and the railway company will reduce costs, improve the quality of the finished product, and reduce outage of the highway and railroad. A major objective is to minimize disruption to both highway and railway traffic during the renewal process in addition to extending the life of the crossing. Suggested procedures, based on experiences for several installations, are presented. Typical schedules are for the railroad to be to be out-of-service for a maximum of four hours and for the highway to be closed only eight to twelve hours. Results are presented for crossings instrumented with pressure cells to document Pressure levels within the layered portion of the crossing structure. In addition, long-term Settlement measurements and assessments for several crossings are documented. The measurements indicate significantly reduced long-term settlements of crossings incorporating the rapid-renewal, layered system, while maintaining acceptable smoothness levels. These long-term performance evaluations indicate this practice ensures long-life, economical, smooth crossings for improved safety and operating performances for both highway agencies and railway companies.


Sign in / Sign up

Export Citation Format

Share Document