Collapse assessment of steel moment frames using endurance time method

2015 ◽  
Vol 14 (2) ◽  
pp. 347-360 ◽  
Author(s):  
E. Rahimi ◽  
H. E. Estekanchi
2013 ◽  
Vol 139 (1) ◽  
pp. 120-132 ◽  
Author(s):  
Dimitrios G. Lignos ◽  
Tsuyoshi Hikino ◽  
Yuichi Matsuoka ◽  
Masayoshi Nakashima

2018 ◽  
Vol 4 (1) ◽  
pp. 93 ◽  
Author(s):  
Hadi Radmanesh ◽  
Majid Mohammadi

This performance-based study was conducted to investigate the effects of seismic coefficients on performance of concrete special moment frames of 5,7, and 10-storey buildings located in Tehran, Iran. The structures are designed three-dimensionally by ETABS 2016 software according to ACI-318-08. Fifteen specimens were designed with different base shears having seismic coefficients of 0.7, 0.85, 1, 1.15, and 1.30 times the proposed value of Iranian Standard 2800, (i.e. decreased by 70 and 85%, and increased by 115 and 130%). Endurance time method (ETA20in series of ET acceleration function) as well as three real earthquake records was employed to evaluate the seismic performance of the modeled structures. The performance of structures was compared by the time of the first plastic hinges formation in beams and columns, the time of entering to nonlinear region and the time of experiencing storey drift of 2% corresponding to the life safety performance level. It was observed that the results of ET records and real records were similar to each other. A procedure was proposed for finding optimum structure with lower weight using ET method through defining efficient ratio (ER) and cost ratio (CR). Based on the results of ER/CR ratio and considering the importance of collapse prevention performance level, optimum structure was a 7-storey structure with lower weight or cost whose seismic coefficient had been reduced by 70%. It was concluded that high safety can not be achieved simply by increasing the seismic coefficient of structures.


2006 ◽  
Vol 22 (2) ◽  
pp. 367-390 ◽  
Author(s):  
Erol Kalkan ◽  
Sashi K. Kunnath

This paper investigates the consequences of well-known characteristics of near-fault ground motions on the seismic response of steel moment frames. Additionally, idealized pulses are utilized in a separate study to gain further insight into the effects of high-amplitude pulses on structural demands. Simple input pulses were also synthesized to simulate artificial fling-step effects in ground motions originally having forward directivity. Findings from the study reveal that median maximum demands and the dispersion in the peak values were higher for near-fault records than far-fault motions. The arrival of the velocity pulse in a near-fault record causes the structure to dissipate considerable input energy in relatively few plastic cycles, whereas cumulative effects from increased cyclic demands are more pronounced in far-fault records. For pulse-type input, the maximum demand is a function of the ratio of the pulse period to the fundamental period of the structure. Records with fling effects were found to excite systems primarily in their fundamental mode while waveforms with forward directivity in the absence of fling caused higher modes to be activated. It is concluded that the acceleration and velocity spectra, when examined collectively, can be utilized to reasonably assess the damage potential of near-fault records.


Sign in / Sign up

Export Citation Format

Share Document