A computational platform for considering the effects of aerodynamic and seismic load combination for utility scale horizontal axis wind turbines

2016 ◽  
Vol 15 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Mohammad-Amin Asareh ◽  
Ian Prowell ◽  
Jeffery Volz ◽  
William Schonberg
2020 ◽  
Author(s):  
Hussein Al-Qarishey ◽  
Robert W. Fletcher

Abstract Wind turbines can create turbulence and downstream wakes which can introduce generation losses of downstream impacted turbines. These downstream turbine-induced losses are due to two different conditions. The first is from power-producing rotating blades of upstream wind turbines agitating the subsequent downstream wind in a cork-screw like manner. The second is from non-rotating, non-operational, non-power-generating wind turbines. These non-operating turbines may be under scheduled service shutdown, or rendered non-functional due to longer-term or permanent mechanical problems. In this work CFD was used to study downstream turbulence and wakes of a utility-scale, non-operational three-blade horizontal axis wind turbines (HAWT). A flow field was constructed using an unstructured grid around a HAWT (rotor hub elevation of 80 meters and a blade length of 40 meters). Various wind velocities were studied up to 25 meters per second. Incompressible flow was used to assess downstream turbulence using a three-dimensional steady state and unsteady state SST k-ω (two equation) turbulence model. Different blade positions with respect to angle of attack (α) were studied, with a 4 degree angle of attack reported here. Pressures and velocities for distances of 100 meters in front and 500 meters downstream from the wind turbine are reported.


Wind Energy ◽  
2013 ◽  
Vol 17 (11) ◽  
pp. 1727-1736 ◽  
Author(s):  
Ali Al-Abadi ◽  
Özgür Ertunç ◽  
Horst Weber ◽  
Antonio Delgado

Author(s):  
Fabio De Bellis ◽  
Luciano A. Catalano ◽  
Andrea Dadone

The numerical simulation of horizontal axis wind turbines (HAWT) has been analysed using computational fluid dynamics (CFD) with the aim of obtaining reliable but at the same time affordable wind turbine simulations, while significantly reducing required overall resources (time, computational power, user skills), for example in an optimization perspective. Starting from mesh generation, time required to extract preliminary aerodynamic predictions of a wind turbine blade has been shortened by means of some simplifications, i.e.: fully unstructured mesh topology, reduced grid size, incompressible flow assumption, use of wall functions, commercial available CFD package employment. Ansys Fluent software package has been employed to solve Reynolds Averaged Navier Stokes (RANS) equations, and results obtained have been compared against NREL Phase VI campaign data. The whole CFD process (pre-processing, processing, postprocessing) has been analysed and the chosen final settings are the result of a trade-off between numerical accuracy and required resources. Besides the introduced simplifications, numerical predictions of shaft torque, forces and flow distribution are in good agreement with experimental data and as accurate as those calcuted by other more sophisticated works.


Sign in / Sign up

Export Citation Format

Share Document