Manipulation and Characterization of a Novel Titanium Powder Precursor for Additive Manufacturing Applications

JOM ◽  
2015 ◽  
Vol 67 (3) ◽  
pp. 564-572 ◽  
Author(s):  
Y. Y. Sun ◽  
S. Gulizia ◽  
C. H. Oh ◽  
C. Doblin ◽  
Y. F. Yang ◽  
...  
2021 ◽  
pp. 1-54
Author(s):  
Damien Gueners ◽  
Belhassen Chedli Bouzgarrou ◽  
Helene Chanal

Abstract In this paper, the influence of cable behavior, on Cable Driven Parallel Robots (CDPR) is studied. This study is conducted with the goal of designing a medium size CDPR for additive manufacturing. This robot needs to have a high level of rigidity to guarantee a given tracking tool path error. Firstly, the characterization of different thin cables (steel, Dyneema®, aramid) is presented. The mechanical properties of these cables, in terms of stiffness, damping, hysteresis and creep are compared with regard to additive manufacturing applications. A stiffness model, which takes into account the cable preload, and a dynamic model of CDPR is proposed. The simulations of these two models are compared with experimental results obtained for the range of cables studied using dynamic stiffness analysis on an 8-cable fully constrained CDPR. This paper concludes on the type of cable that should be chosen for our application.


2018 ◽  
Author(s):  
Jordan T. Sutton ◽  
Kalavathy Rajan ◽  
David P. Harper ◽  
Stephen Chmely

Generating compatible and competitive materials that are environmentally sustainable and economically viable is paramount for the success of additive manufacturing using renewable materials. We report the successful application of renewable, modified lignin-containing photopolymer resins in a commercial stereolithography system. Resins were fabricated within operable ranges for viscosity and cure properties, using up to 15% modified lignin by weight with the potential for higher amounts. A four-fold increase in ductility in cured parts with higher lignin concentration is noted as compared to commercial SLA resins. Excellent print quality was seen in modified lignin resins, with good layer fusion, high surface definition, and visual clarity. These materials can be used to generate new products for additive manufacturing applications and help fill vacant material property spaces, where ductility, sustainability, and application costs are critical.


2018 ◽  
Author(s):  
Jordan T. Sutton ◽  
Kalavathy Rajan ◽  
David P. Harper ◽  
Stephen Chmely

Generating compatible and competitive materials that are environmentally sustainable and economically viable is paramount for the success of additive manufacturing using renewable materials. We report the successful application of renewable, modified lignin-containing photopolymer resins in a commercial stereolithography system. Resins were fabricated within operable ranges for viscosity and cure properties, using up to 15% modified lignin by weight with the potential for higher amounts. A four-fold increase in ductility in cured parts with higher lignin concentration is noted as compared to commercial SLA resins. Excellent print quality was seen in modified lignin resins, with good layer fusion, high surface definition, and visual clarity. These materials can be used to generate new products for additive manufacturing applications and help fill vacant material property spaces, where ductility, sustainability, and application costs are critical.


Sign in / Sign up

Export Citation Format

Share Document