modified lignin
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 60)

H-INDEX

27
(FIVE YEARS 7)

Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3502
Author(s):  
Hamed Younesi-Kordkheili ◽  
Antonio Pizzi

The research aim of this work is to determine the influence of lignin modification methods on lignin–phenol–formaldehyde (LPF) adhesive properties. Thus, glyoxal (G), phenol (P), ionic liquid (IL), and maleic anhydride (MA) were used to modify lignin. The modified lignins were used for phenol substitution (50 wt%) in phenol–formaldehyde adhesives. The prepared resins were then used for the preparation of wood particleboard. These LPF resins were characterized physicochemically, namely by using standard methods to determine gel time, solids content, density, and viscosity, thus the physicochemical properties of the LPF resins synthesized. The panels dimensional stability, formaldehyde emission, bending modulus, bending strength, and internal bond (IB) strength were also measured. MA-modified lignin showed by differential scanning calorimetry (DSC) the lowest temperature of curing than the resins with non-modified lignin and modified with IL, phenolared lignin, and glyoxal. LPF resins with lignin treated with maleic anhydride presented a shorter gel time, higher viscosity, and solids content than the resins with other lignin modifications. Equally, the particleboard panels prepared with LPF resins with maleic anhydride or with ionic liquid had the lowest formaldehyde emission and the highest mechanical strength among all the synthesized resins. The dimensional stability of all panels bonded with modified lignin LPF resins presented no difference of any significance.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3473
Author(s):  
Jordan T. Sutton ◽  
Kalavathy Rajan ◽  
David P. Harper ◽  
Stephen C. Chmely

Despite recent successes in incorporating lignin into photoactive resins, lignin photo-properties can be detrimental to its application in UV-curable photopolymers, especially in specialized engineered resins for use in stereolithography printing. We report on chemical modification techniques employed to reduce UV absorption by lignin and the resulting mechanical, thermal, and cure properties of these modified lignin materials. Lignin was modified using reduction and acylation reactions and incorporated into a 3D printable resin formulation. UV–Vis absorption at the 3D printing range of 405 nm was reduced in all modified lignins compared to the unmodified sample by 25% to ≥ 60%. Resins made with the modified lignins showed an increase in stiffness and strength with lower thermal stability. Studying these techniques is an important step in developing lignin for use in UV-curing applications and further the effort to valorize lignin towards commercial use.


2021 ◽  
Vol 167 ◽  
pp. 113532
Author(s):  
Lívia Beatriz Brenelli ◽  
Lilian Regina Barros Mariutti ◽  
Rodrigo Villares Portugal ◽  
Marcelo Alexandre de Farias ◽  
Neura Bragagnolo ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2359
Author(s):  
Harmaen Ahmad Saffian ◽  
Masayuki Yamaguchi ◽  
Hidayah Ariffin ◽  
Khalina Abdan ◽  
Nur Kartinee Kassim ◽  
...  

In this study, Kraft lignin was esterified with phthalic anhydride and was served as reinforcing filler for poly(butylene succinate) (PBS). Composites with different ratios of PBS, lignin (L), modified lignin (ML) and kenaf core fibers (KCF) were fabricated using a compounding method. The fabricated PBS composites and its counterparts were tested for thermal, physical and mechanical properties. Weight percent gain of 4.5% after lignin modification and the FTIR spectra has confirmed the occurrence of an esterification reaction. Better thermo-mechanical properties were observed in the PBS composites reinforced with modified lignin and KCF, as higher storage modulus and loss modulus were recorded using dynamic mechanical analysis. The density of the composites fabricated ranged from 1.26 to 1.43 g/cm3. Water absorption of the composites with the addition of modified lignin is higher than that of composites with unmodified lignin. Pure PBS exhibited the highest tensile strength of 18.62 MPa. Incorporation of lignin and KCF into PBS resulted in different extents of reduction in tensile strength (15.78 to 18.60 MPa). However, PBS composite reinforced with modified lignin exhibited better tensile and flexural strength compared to its unmodified lignin counterpart. PBS composite reinforced with 30 wt% ML and 20 wt% KCF had the highest Izod impact, as fibers could diverge the cracking propagation of the matrix. The thermal conductivity value of the composites ranged from 0.0903 to 0.0983 W/mK, showing great potential as a heat insulator.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3378
Author(s):  
Yanhong Jin ◽  
Jiaxian Lin ◽  
Yu Cheng ◽  
Chunhong Lu

As a major component of lignocellulosic biomass, lignin is one of the largest natural resources of biopolymers and, thus, an abundant and renewable raw material for products, such as high-performance fibers for industrial applications. Direct conversion of lignin has long been investigated, but the fiber spinning process for lignin is difficult and the obtained fibers exhibit unsatisfactory mechanical performance mainly due to the amorphous chemical structure, low molecular weight of lignin, and broad molecular weight distribution. Therefore, different textile spinning techniques, modifications of lignin, and incorporation of lignin into polymers have been and are being developed to increase lignin’s spinnability and compatibility with existing materials to yield fibers with better mechanical performance. This review presents the latest advances in the textile fabrication techniques, modified lignin-based high-performance fibers, and their potential in the enhancement of the mechanical performance.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3523
Author(s):  
Sunanda Sain ◽  
Leonidas Matsakas ◽  
Ulrika Rova ◽  
Paul Christakopoulos ◽  
Tommy Öman ◽  
...  

In this study, formaldehyde-free bioresin adhesives were synthesised from lignin and tannin, which were obtained from softwood bark. The extraction was done via organosolv treatment and hot water extraction, respectively. A non-volatile, non-toxic aldehyde, glyoxal, was used as a substitute for formaldehyde in order to modify the chemical structure of both the lignin and tannin. The glyoxal modification reaction was confirmed by ATR–FTIR spectroscopy. Three different resin formulations were prepared using modified lignin along with the modified tannin. The thermal properties of the modified lignin, tannin, and the bioresins were assessed by DSC and TGA. When the bioresins were cured at a high temperature (200 ℃) by compression moulding, they exhibited higher thermal stability as well as an enhanced degree of cross-linking compared to the low temperature-cured bioresins. The thermal properties of the resins were strongly affected by the compositions of the resins as well as the curing temperatures.


2021 ◽  
Vol 25 ◽  
pp. 100730
Author(s):  
Hui Ding ◽  
Weijun Yang ◽  
Wenhao Yu ◽  
Tianxi Liu ◽  
Haigang Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document