scholarly journals On the relations of general homogeneous spaces and the two-wavelet localization operators

Author(s):  
Olya Dokht Sajadi Rad ◽  
Rajab Ali Kamyabi Gol ◽  
Fatemeh Esmaeelzadeh

AbstractIn this note, the two-wavelet localization operator for square integrable representation of a general homogeneous space is defined. Then among other things, the boundedness properties of this operator is investigated. In particular, it is shown that it is in the Schatten p-class.

Author(s):  
PETER SPACEK

AbstractIn this article we construct Laurent polynomial Landau–Ginzburg models for cominuscule homogeneous spaces. These Laurent polynomial potentials are defined on a particular algebraic torus inside the Lie-theoretic mirror model constructed for arbitrary homogeneous spaces in [Rie08]. The Laurent polynomial takes a similar shape to the one given in [Giv96] for projective complete intersections, i.e., it is the sum of the toric coordinates plus a quantum term. We also give a general enumeration method for the summands in the quantum term of the potential in terms of the quiver introduced in [CMP08], associated to the Langlands dual homogeneous space. This enumeration method generalizes the use of Young diagrams for Grassmannians and Lagrangian Grassmannians and can be defined type-independently. The obtained Laurent polynomials coincide with the results obtained so far in [PRW16] and [PR13] for quadrics and Lagrangian Grassmannians. We also obtain new Laurent polynomial Landau–Ginzburg models for orthogonal Grassmannians, the Cayley plane and the Freudenthal variety.


2005 ◽  
Vol 16 (09) ◽  
pp. 941-955 ◽  
Author(s):  
ALI BAKLOUTI ◽  
FATMA KHLIF

Let G be a connected, simply connected nilpotent Lie group, H and K be connected subgroups of G. We show in this paper that the action of K on X = G/H is proper if and only if the triple (G,H,K) has the compact intersection property in both cases where G is at most three-step and where G is special, extending then earlier cases. The result is also proved for exponential homogeneous space on which acts a maximal subgroup.


1976 ◽  
Vol 15 (1) ◽  
pp. 1-12 ◽  
Author(s):  
A.L. Carey

In the last three years a number of people have investigated the orthogonality relations for square integrable representations of non-unimodular groups, extending the known results for the unimodular case. The results are stated in the language of left (or generalized) Hilbert algebras. This paper is devoted to proving the orthogonality relations without recourse to left Hilbert algebra techniques. Our main technical tool is to realise the square integrable representation in question in a reproducing kernel Hilbert space.


2016 ◽  
Vol 27 (10) ◽  
pp. 1650085
Author(s):  
A. Baklouti ◽  
N. Elaloui ◽  
I. Kedim

A local rigidity theorem was proved by Selberg and Weil for Riemannian symmetric spaces and generalized by Kobayashi for a non-Riemannian homogeneous space [Formula: see text], determining explicitly which homogeneous spaces [Formula: see text] allow nontrivial continuous deformations of co-compact discontinuous groups. When [Formula: see text] is assumed to be exponential solvable and [Formula: see text] is a maximal subgroup, an analog of such a theorem states that the local rigidity holds if and only if [Formula: see text] is isomorphic to the group Aff([Formula: see text]) of affine transformations of the real line (cf. [L. Abdelmoula, A. Baklouti and I. Kédim, The Selberg–Weil–Kobayashi rigidity theorem for exponential Lie groups, Int. Math. Res. Not. 17 (2012) 4062–4084.]). The present paper deals with the more general context, when [Formula: see text] is a connected solvable Lie group and [Formula: see text] a maximal nonnormal subgroup of [Formula: see text]. We prove that any discontinuous group [Formula: see text] for a homogeneous space [Formula: see text] is abelian and at most of rank 2. Then we discuss an analog of the Selberg–Weil–Kobayashi local rigidity theorem in this solvable setting. In contrast to the semi-simple setting, the [Formula: see text]-action on [Formula: see text] is not always effective, and thus the space of group theoretic deformations (formal deformations) [Formula: see text] could be larger than geometric deformation spaces. We determine [Formula: see text] and also its quotient modulo uneffective parts when the rank [Formula: see text]. Unlike the context of exponential solvable case, we prove the existence of formal colored discontinuous groups. That is, the parameter space admits a mixture of locally rigid and formally nonrigid deformations.


Author(s):  
Vladimir F. Molchanov ◽  
Svetlana V. Tsykina

The basic notion of the Berezin quantization on a manifold M is a correspondence which to an operator A from a class assigns the pair of functions F and F^♮ defined on M. These functions are called covariant and contravariant symbols of A. We are interested in homogeneous space M=G/H and classes of operators related to the representation theory. The most algebraic version of quantization — we call it the polynomial quantization — is obtained when operators belong to the algebra of operators corresponding in a representation T of G to elements X of the universal enveloping algebra Env g of the Lie algebra g of G. In this case symbols turn out to be polynomials on the Lie algebra g. In this paper we offer a new theme in the Berezin quantization on G/H: as an initial class of operators we take operators corresponding to elements of the group G itself in a representation T of this group. In the paper we consider two examples, here homogeneous spaces are para-Hermitian spaces of rank 1 and 2: a) G=SL(2;R), H — the subgroup of diagonal matrices, G/H — a hyperboloid of one sheet in R^3; b) G — the pseudoorthogonal group SO_0 (p; q), the subgroup H covers with finite multiplicity the group SO_0 (p-1,q -1)×SO_0 (1;1); the space G/H (a pseudo-Grassmann manifold) is an orbit in the Lie algebra g of the group G.


Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1011
Author(s):  
Aleksy Tralle

Let G / H be a homogeneous space of a compact simple classical Lie group G. Assume that the maximal torus T H of H is conjugate to a torus T β whose Lie algebra t β is the kernel of the maximal root β of the root system of the complexified Lie algebra g c . We prove that such homogeneous space is formal. As an application, we give a short direct proof of the formality property of compact homogeneous 3-Sasakian spaces of classical type. This is a complement to the work of Fernández, Muñoz, and Sanchez which contains a full analysis of the formality property of S O ( 3 ) -bundles over the Wolf spaces and the proof of the formality property of homogeneous 3-Sasakian manifolds as a corollary.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1867
Author(s):  
Alexander Breev ◽  
Alexander Shapovalov

We develop a non-commutative integration method for the Dirac equation in homogeneous spaces. The Dirac equation with an invariant metric is shown to be equivalent to a system of equations on a Lie group of transformations of a homogeneous space. This allows us to effectively apply the non-commutative integration method of linear partial differential equations on Lie groups. This method differs from the well-known method of separation of variables and to some extent can often supplement it. The general structure of the method developed is illustrated with an example of a homogeneous space which does not admit separation of variables in the Dirac equation. However, the basis of exact solutions to the Dirac equation is constructed explicitly by the non-commutative integration method. In addition, we construct a complete set of new exact solutions to the Dirac equation in the three-dimensional de Sitter space-time AdS3 using the method developed. The solutions obtained are found in terms of elementary functions, which is characteristic of the non-commutative integration method.


2020 ◽  
Vol 20 (03) ◽  
pp. 2050015
Author(s):  
Raphaël Carroy ◽  
Andrea Medini ◽  
Sandra Müller

All spaces are assumed to be separable and metrizable. We show that, assuming the Axiom of Determinacy, every zero-dimensional homogeneous space is strongly homogeneous (i.e. all its non-empty clopen subspaces are homeomorphic), with the trivial exception of locally compact spaces. In fact, we obtain a more general result on the uniqueness of zero-dimensional homogeneous spaces which generate a given Wadge class. This extends work of van Engelen (who obtained the corresponding results for Borel spaces), complements a result of van Douwen, and gives partial answers to questions of Terada and Medvedev.


1985 ◽  
Vol 37 (3) ◽  
pp. 467-487 ◽  
Author(s):  
Carolyn S. Gordon

The simple algebraic and geometric properties of naturally reductive metrics make them useful as examples in the study of homogeneous Riemannian manifolds. (See for example [2], [3], [15]). The existence and abundance of naturally reductive left-invariant metrics on a Lie group G or homogeneous space G/L reflect the structure of G itself. Such metrics abound on compact groups, exist but are more restricted on noncompact semisimple groups, and are relatively rare on solvable groups. The goals of this paper are(i) to study all naturally reductive homogeneous spaces of G when G is either semisimple of noncompact type or nilpotent and(ii) to give necessary conditions on a Riemannian homogeneous space of an arbitrary Lie group G in order that the metric be naturally reductive with respect to some transitive subgroup of G.


2017 ◽  
Vol 2019 (14) ◽  
pp. 4431-4468 ◽  
Author(s):  
Christoph Böhm ◽  
Ramiro Lafuente ◽  
Miles Simon

AbstractWe prove uniform curvature estimates for homogeneous Ricci flows: For a solution defined on $[0,t]$ the norm of the curvature tensor at time $t$ is bounded by the maximum of $C(n)/t$ and $C(n)({\mathrm{scal}}(g(t)) - {\mathrm{scal}}(g(0)) )$. This is used to show that solutions with finite extinction time are Type I, immortal solutions are Type III and ancient solutions are Type I, with constants depending only on the dimension $n$. A further consequence is that a non-collapsed homogeneous ancient solution on a compact homogeneous space emerges from a unique Einstein metric on that space. The above curvature estimates follow from a gap theorem for Ricci-flatness on homogeneous spaces. This theorem is proved by contradiction, using a local $W^{2,p}$ convergence result which holds without symmetry assumptions.


Sign in / Sign up

Export Citation Format

Share Document