scholarly journals Developments in Sclerostin Biology: Regulation of Gene Expression, Mechanisms of Action, and Physiological Functions

2014 ◽  
Vol 12 (1) ◽  
pp. 107-114 ◽  
Author(s):  
Megan M. Weivoda ◽  
Merry Jo Oursler
2006 ◽  
Vol 89 (4) ◽  
pp. 1207-1214 ◽  
Author(s):  
Chao Wu Xiao ◽  
Carla Wood ◽  
G Sarwar Gilani

Abstract Soy consumption is associated with decreased incidence of chronic diseases, including cardiovascular diseases, atherosclerosis, diabetes, osteoporosis, and certain types of cancers. However, consumption of high amounts of soy isoflavones may adversely influence endocrine functions, such as thyroid function and reproductive performance, because of their structural similarity to endogenous estrogens. Nuclear receptors are a group of transcription factors that play critical roles in the regulation of gene expression and physiological functions through direct interaction with target genes. Modulation of the abundance of these receptors, such as changing their gene expression, alters the sensitivity of the target cells or tissues to the stimulation of ligands, and eventually affects the relevant physiological functions, such as growth, development, osteogenesis, immune response, lipogenesis, reproductive process, and anticarcinogenesis. A number of studies have shown that the bioactive components in soy can modify the expression of these receptors in various tissues and cancer cells, which is believed to be a key intracellular mechanism by which soy components affect physiological functions. This review summarizes the current understanding of the modulation of nuclear receptors by soy proteins and isoflavones, and focuses especially on the receptors for estrogens, progesterone, androgen, vitamin D, retinoic acid, and thyroid hormones as well as the potential impact on physiological functions.


2013 ◽  
Vol 54 ◽  
pp. 91-101 ◽  
Author(s):  
Megan Wight ◽  
Andreas Werner

NATs (natural antisense transcripts) are widespread in eukaryotic genomes. Experimental evidence indicates that sense and antisense transcripts interact, suggesting a role for NATs in the regulation of gene expression. On the other hand, the transcription of a gene locus in both orientations and RNA hybrid formation can also lead to transcriptional interference, trigger an immune response or induce gene silencing. Tissue-specific expression of NATs and the compartmentalization of cells ensure that the regulatory impact of NATs prevails. Consequently, NATs are now acknowledged as important modulators of gene expression. New mechanisms of action and important biological roles of NATs keep emerging, making regulatory RNAs an exciting and quickly moving area of research.


2012 ◽  
Vol 40 (1) ◽  
pp. 257-261 ◽  
Author(s):  
Deborah L. Grainger ◽  
Christodoulos Tavelis ◽  
Alexander J. Ryan ◽  
Katherine A. Hinchliffe

Of the seven phosphoinositides, PtdIns5P remains the most enigmatic. However, recent research has begun to elucidate its physiological functions. It is now clear that PtdIns5P is found in several distinct subcellular locations, and the identification of a number of PtdIns5P-binding proteins points to its involvement in a variety of key processes, including signal transduction, membrane trafficking and regulation of gene expression. Although the mechanisms that control its turnover are not yet fully understood, the existence of multiple pathways for PtdIns5P regulation is consistent with this emerging versatility.


2020 ◽  
Vol 477 (16) ◽  
pp. 3091-3104 ◽  
Author(s):  
Luciana E. Giono ◽  
Alberto R. Kornblihtt

Gene expression is an intricately regulated process that is at the basis of cell differentiation, the maintenance of cell identity and the cellular responses to environmental changes. Alternative splicing, the process by which multiple functionally distinct transcripts are generated from a single gene, is one of the main mechanisms that contribute to expand the coding capacity of genomes and help explain the level of complexity achieved by higher organisms. Eukaryotic transcription is subject to multiple layers of regulation both intrinsic — such as promoter structure — and dynamic, allowing the cell to respond to internal and external signals. Similarly, alternative splicing choices are affected by all of these aspects, mainly through the regulation of transcription elongation, making it a regulatory knob on a par with the regulation of gene expression levels. This review aims to recapitulate some of the history and stepping-stones that led to the paradigms held today about transcription and splicing regulation, with major focus on transcription elongation and its effect on alternative splicing.


Sign in / Sign up

Export Citation Format

Share Document