Lipid Production by Culturing Oleaginous Yeast and Algae with Food Waste and Municipal Wastewater in an Integrated Process

2011 ◽  
Vol 165 (2) ◽  
pp. 442-453 ◽  
Author(s):  
Zhanyou Chi ◽  
Yubin Zheng ◽  
Anping Jiang ◽  
Shulin Chen
2014 ◽  
Vol 7 (1) ◽  
pp. 42 ◽  
Author(s):  
Fabio Santomauro ◽  
Fraeya M Whiffin ◽  
Rod J Scott ◽  
Christopher J Chuck

2018 ◽  
Vol 19 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Fábio Guerreiro ◽  
Ana Constantino ◽  
Emília Lima-Costa ◽  
Sara Raposo

Author(s):  
Judita Koreivienė ◽  
Robertas Valčiukas ◽  
Jūratė Karosienė ◽  
Pranas Baltrėnas

Industry, transport and unsustainable agriculture result in the increased quantity of wastewater, release of nutrients and emission of carbon dioxide that promotes eutrophication of water bodies and global climate change. the application of microalgae for phycoremediation, their biomass use for human needs may increase sustainability and have a positive effect on the regional development. The experiments were carried out in order to establish the feasibility of treating the local municipal wastewater with microalgae consortia and their biomass potential for biofuel production. The results revealed that Chlorella/Scenedesmus consortium eliminated up to 99.7–99.9% of inorganic phosphorus and up to 88.6–96.4% of inorganic nitrogen from the wastewater within three weeks. The ammonium removal was more efficient than that of nitrate. Chlorella algae grew better in diluted, while Scenedesmus – in the concentrated wastewater. The consortium treated wastewater more efficiently than a single species. The maximum biomass (3.04 g/L) of algal consortium was estimated in concentrated wastewater. Algae accumulated 0.65–1.37 g of CO2/L per day in their biomass. Tus, Chlorella/Scenedesmus consortium is a promising tool for nutrients elimination from the local wastewater under the climatic conditions specific to Lithuania. However, none of the two species were able to accumulate lipids under the nitrogen starvation conditions.


Author(s):  
Liting Lyu ◽  
Yadong Chu ◽  
Sufang Zhang ◽  
Yue Zhang ◽  
Qitian Huang ◽  
...  

Conversion of lignocellulosic biomass into lipids and related chemicals has attracted much attention in the past two decades, and the oleaginous yeast Rhodosporidiumtoruloides has been widely used in this area. While R. toruloides species naturally have physiological advantages in terms of substrate utilization, lipid accumulation, and inhibitor resistance, reduced lipid production and cell growth are noticed when biomass hydrolysates are used as feedstocks. To improve the robustness of R. toruloides, here, we devised engineered strains by overexpressing genes responsible for phenolic compound degradation. Specifically, gene expression cassettes of the manganese peroxidase gene (MNP) and versatile peroxidase gene (VP) were constructed and integrated into the genome of R. toruloides NP11. A series of engineered strains were evaluated for lipid production in the presence of typical phenolic inhibitors. The results showed that R. toruloides strains with proper expression of MNP or VP indeed grew faster in the presence of vanillin and 5-hydroxymethylfurfural than the parental strain. When cultivated in concentrated mode biomass hydrolysates, the strain VP18 had improved performance as the cell mass and lipid content increased by 30% and 25%, respectively. This study provides more robust oleaginous yeast strains for microbial lipid production from lignocellulosic biomass, and similar efforts may be used to devise more advanced lipid producers.


2014 ◽  
Vol 47 (3) ◽  
pp. 6210-6215
Author(s):  
Rafael Muñoz-Tamayo ◽  
César-Arturo Aceves-Lara ◽  
Carine Bideaux

2021 ◽  
Vol 155 ◽  
pp. 155-165
Author(s):  
Wei Han ◽  
Wenbiao Jin ◽  
Ze Li ◽  
Yubin Wei ◽  
Zhongqi He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document