A Novel Method for Efficient Preparation of Mucosal Adjuvant Escherichia coli Heat-Labile Enterotoxin Mutant (LTm) by Artificially Assisted Self-Assembly In Vitro

2016 ◽  
Vol 179 (1) ◽  
pp. 33-45
Author(s):  
Di Liu ◽  
Na Zhang ◽  
Wenyun Zheng ◽  
Hua Guo ◽  
Xiaoli Wang ◽  
...  
1996 ◽  
Vol 271 (43) ◽  
pp. 27188
Author(s):  
Lloyd W. Ruddock ◽  
Jeremy J.F. Coen ◽  
Caroline Cheesman ◽  
Robert B. Freedman ◽  
Timothy R. Hirst

2017 ◽  
Vol 114 (46) ◽  
pp. 12178-12183 ◽  
Author(s):  
Binh Nguyen ◽  
Yerdos Ordabayev ◽  
Joshua E. Sokoloski ◽  
Elizabeth Weiland ◽  
Timothy M. Lohman

Escherichia coli UvrD DNA helicase functions in several DNA repair processes. As a monomer, UvrD can translocate rapidly and processively along ssDNA; however, the monomer is a poor helicase. To unwind duplex DNA in vitro, UvrD needs to be activated either by self-assembly to form a dimer or by interaction with an accessory protein. However, the mechanism of activation is not understood. UvrD can exist in multiple conformations associated with the rotational conformational state of its 2B subdomain, and its helicase activity has been correlated with a closed 2B conformation. Using single-molecule total internal reflection fluorescence microscopy, we examined the rotational conformational states of the 2B subdomain of fluorescently labeled UvrD and their rates of interconversion. We find that the 2B subdomain of the UvrD monomer can rotate between an open and closed conformation as well as two highly populated intermediate states. The binding of a DNA substrate shifts the 2B conformation of a labeled UvrD monomer to a more open state that shows no helicase activity. The binding of a second unlabeled UvrD shifts the 2B conformation of the labeled UvrD to a more closed state resulting in activation of helicase activity. Binding of a monomer of the structurally similar Escherichia coli Rep helicase does not elicit this effect. This indicates that the helicase activity of a UvrD dimer is promoted via direct interactions between UvrD subunits that affect the rotational conformational state of its 2B subdomain.


Vaccine ◽  
2009 ◽  
Vol 27 (32) ◽  
pp. 4302-4308 ◽  
Author(s):  
Shuang Liang ◽  
Kavita B. Hosur ◽  
Hesham F. Nawar ◽  
Michael W. Russell ◽  
Terry D. Connell ◽  
...  

2012 ◽  
Vol 19 (10) ◽  
pp. 1603-1608 ◽  
Author(s):  
Koushik Roy ◽  
David J. Hamilton ◽  
James M. Fleckenstein

ABSTRACTEnterotoxigenicEscherichia coli(ETEC) is an important cause of diarrheal disease in developing countries, where it is responsible for hundreds of thousands of deaths each year. Vaccine development for ETEC has been hindered by the heterogeneity of known molecular targets and the lack of broad-based sustained protection afforded by existing vaccine strategies. In an effort to explore the potential role of novel antigens in ETEC vaccines, we examined the ability of antibodies directed against the ETEC heat-labile toxin (LT) and the recently described EtpA adhesin to prevent intestinal colonizationin vivoand toxin delivery to epithelial cellsin vitro. We demonstrate that EtpA is required for the optimal delivery of LT and that antibodies against this adhesin play at least an additive role in preventing delivery of LT to target intestinal cells when combined with antibodies against either the A or B subunits of the toxin. Moreover, vaccination with a combination of LT and EtpA significantly impaired intestinal colonization. Together, these results suggest that the incorporation of recently identified molecules such as EtpA could be used to enhance current approaches to ETEC vaccine development.


2008 ◽  
Vol 190 (7) ◽  
pp. 2400-2410 ◽  
Author(s):  
M. A. Lasaro ◽  
J. F. Rodrigues ◽  
C. Mathias-Santos ◽  
B. E. C. Guth ◽  
A. Balan ◽  
...  

ABSTRACT The natural diversity of the elt operons, encoding the heat-labile toxin LT-I (LT), carried by enterotoxigenic Escherichia coli (ETEC) strains isolated from humans was investigated. For many years, LT was supposed to be represented by a rather conserved toxin, and one derivative, produced by the reference H10407 strain, was intensively studied either as a virulence factor or as a vaccine adjuvant. Amplicons encompassing the two LT-encoding genes (eltA and eltB) of 51 human-derived ETEC strains, either LT+ (25 strains) only or LT+/ST+ (26 strains), isolated from asymptomatic (24 strains) or diarrheic (27 strains) subjects, were subjected to restriction fragment length polymorphism (RFLP) analysis and DNA sequencing. Seven polymorphic RFLP types of the H10407 strain were detected with six (BsaI, DdeI, HhaI, HincII, HphI, and MspI) restriction enzymes. Additionally, the single-nucleotide polymorphic analysis revealed 50 base changes in the elt operon, including 21 polymorphic sites at eltA and 9 at eltB. Based on the deduced amino acid sequences, 16 LT types were identified, including LT1, expressed by the H10407 strain and 23 other strains belonging to seven different serotypes, and LT2, expressed by 11 strains of six different serotypes. In vitro experiments carried out with purified toxins indicated that no significant differences in GM1-binding affinity could be detected among LT1, LT2, and LT4. However, LT4, but not other toxin types, showed reduced toxic activities measured either in vitro with cultured cells (Y-1 cells) or in vivo in rabbit ligated ileal loops. Collectively, these results indicate that the natural diversity of LTs produced by wild-type ETEC strains isolated from human hosts is considerably larger than previously assumed and may impact the pathogeneses of the strains and the epidemiology of the disease.


1989 ◽  
Vol 183 (2) ◽  
pp. 311-316 ◽  
Author(s):  
Stephen HARFORD ◽  
Colin W. DYKES ◽  
Adrian N. HOBDEN ◽  
Melanie J. READ ◽  
Ishbel J. HALLIDAY

2001 ◽  
Vol 75 (22) ◽  
pp. 11010-11016 ◽  
Author(s):  
Catherine Fromantin ◽  
Béatrice Jamot ◽  
Jean Cohen ◽  
Lionel Piroth ◽  
Pierre Pothier ◽  
...  

ABSTRACT We investigated the rotavirus-specific lymphocyte responses induced by intranasal immunization of adult BALB/c mice with rotavirus 2/6 virus-like particles (2/6-VLPs) of the bovine RF strain, by assessing the profile of cytokines produced after in vitro restimulation and serum and fecal antibody responses. The cytokines produced by splenic cells were first evaluated. Intranasal immunization with 50 μg of 2/6-VLPs induced a high serum antibody response, including immunoglobulin G1 (IgG1) and IgG2a, a weak fecal antibody response, and a mixed Th1/Th2-like profile of cytokines characterized by gamma interferon and interleukin 10 (IL-10) production and very low levels of IL-2, IL-4, and IL-5. Intranasal immunization with 10 μg of 2/6-VLPs coadministered with the mucosal adjuvants cholera toxin andEscherichia coli heat-labile toxin (LT) considerably enhanced the Th1/Th2-like response; notably, significant levels of IL-2, IL-4, and IL-5 were observed. Since rotavirus is an enteric pathogen, we next investigated the production of IL-2 and IL-5, as being representative of Th1 and Th2 responses, by Peyer's patch and mesenteric lymph node cells from mice immunized intranasally with 2/6-VLPs and LT. The results were compared to those obtained from splenic and cervical lymph node cells. We found that both cytokines were produced by cells from each of these lymphoid tissues. These results confirm the Th1/Th2-like response observed at the systemic level and show, on the assumption that T cells are the primary cells producing the cytokines after in vitro restimulation, that rotavirus-specific T lymphocytes are present in the intestine after intranasal immunization with 2/6-VLPs and LT.


Sign in / Sign up

Export Citation Format

Share Document