Anthraquinone from Edible Fungi Pleurotus ostreatus Protects Human SH-SY5Y Neuroblastoma Cells Against 6-Hydroxydopamine-Induced Cell Death—Preclinical Validation of Gene Knockout Possibilities of PARK7, PINK1, and SNCA1 Using CRISPR SpCas9

2019 ◽  
Vol 191 (2) ◽  
pp. 555-566 ◽  
Author(s):  
Bindhu J. ◽  
Arunava Das ◽  
K. M. Sakthivel
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Amnah M. Alshangiti ◽  
Eszter Tuboly ◽  
Shane V. Hegarty ◽  
Cathal M. McCarthy ◽  
Aideen M. Sullivan ◽  
...  

Neuroblastoma is an embryonal malignancy that arises from cells of sympathoadrenal lineage during the development of the nervous system. It is the most common pediatric extracranial solid tumor and is responsible for 15% of childhood deaths from cancer. Fifty percent of cases are diagnosed as high-risk metastatic disease with a low overall 5-year survival rate. More than half of patients experience disease recurrence that can be refractory to treatment. Amplification of the MYCN gene is an important prognostic indicator that is associated with rapid disease progression and a poor prognosis, highlighting the need for new therapeutic approaches. In recent years, there has been an increasing focus on identifying anticancer properties of naturally occurring chalcones, which are secondary metabolites with variable phenolic structures. Here, we report that 4-hydroxychalcone is a potent cytotoxin for MYCN-amplified IMR-32 and SK-N-BE (2) neuroblastoma cells, when compared to non-MYCN-amplified SH-SY5Y neuroblastoma cells and to the non-neuroblastoma human embryonic kidney cell line, HEK293t. Moreover, 4-hydroxychalcone treatment significantly decreased cellular levels of the antioxidant glutathione and increased cellular reactive oxygen species. In addition, 4-hydroxychalcone treatment led to impairments in mitochondrial respiratory function, compared to controls. In support of this, the cytotoxic effect of 4-hydroxychalcone was prevented by co-treatment with either the antioxidant N-acetyl-L-cysteine, a pharmacological inhibitor of oxidative stress-induced cell death (IM-54) or the mitochondrial reactive oxygen species scavenger, Mito-TEMPO. When combined with the anticancer drugs cisplatin or doxorubicin, 4-hydroxychalcone led to greater reductions in cell viability than was induced by either anti-cancer agent alone. In summary, this study identifies a cytotoxic effect of 4-hydroxychalcone in MYCN-amplified human neuroblastoma cells, which rationalizes its further study in the development of new therapies for pediatric neuroblastoma.


2012 ◽  
Vol 12 (1) ◽  
pp. 535-542 ◽  
Author(s):  
IRENA HORWACIK ◽  
MONIKA GAIK ◽  
MAŁGORZATA DURBAS ◽  
ELŻBIETA BORATYN ◽  
GRZEGORZ ZAJĄC ◽  
...  

1994 ◽  
Vol 14 (10) ◽  
pp. 6584-6596
Author(s):  
G Melino ◽  
M Annicchiarico-Petruzzelli ◽  
L Piredda ◽  
E Candi ◽  
V Gentile ◽  
...  

In this report, we show that the overexpression of tissue transglutaminase (tTG) in the human neuroblastoma cell line SK-N-BE(2) renders these neural crest-derived cells highly susceptible to death by apoptosis. Cells transfected with a full-length tTG cDNA, under the control of a constitutive promoter, show a drastic reduction in proliferative capacity paralleled by a large increase in cell death rate. The dying tTG-transfected cells exhibit both cytoplasmic and nuclear changes characteristic of cells undergoing apoptosis. The tTG-transfected cells express high Bcl-2 protein levels as well as phenotypic neural cell adhesion molecule markers (NCAM and neurofilaments) of cells differentiating along the neuronal pathway. In keeping with these findings, transfection of neuroblastoma cells with an expression vector containing segments of the human tTG cDNA in antisense orientation resulted in a pronounced decrease of both spontaneous and retinoic acid (RA)-induced apoptosis. We also present evidence that (i) the apoptotic program of these neuroectodermal cells is strictly regulated by RA and (ii) cell death by apoptosis in the human neuroblastoma SK-N-BE(2) cells preferentially occurs in the substrate-adherent phenotype. For the first time, we report here a direct effect of tTG in the phenotypic maturation toward apoptosis. These results indicate that the tTG-dependent irreversible cross-linking of intracellular protein represents an important biochemical event in the induction of the structural changes featuring cells dying by apoptosis.


2018 ◽  
Vol 112 ◽  
pp. 288-296 ◽  
Author(s):  
Yuki Inoue ◽  
Hirokazu Hara ◽  
Yukari Mitsugi ◽  
Eiji Yamaguchi ◽  
Tetsuro Kamiya ◽  
...  

Nutrients ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1449 ◽  
Author(s):  
Chi-Rei Wu ◽  
Hung-Chi Chang ◽  
Yih-Dih Cheng ◽  
Wan-Cheng Lan ◽  
Shu-Er Yang ◽  
...  

The medicinal ferns of Polydiaceae and Davalliaceae species are called “Gusuibu” by Chinese physicians and used as antiaging dietary medicines. Our previous report revealed that Drynaria fortunei (Polydiaceae) protected against 6-hydroxydopamine (6-OHDA)-induced oxidative damage via the PI3K/AKT pathway in B35 neuroblastoma cells. The present study compares the antioxidant phytoconstituent contents and radical scavenging capacities of five Davalliaceae species. The further aim was to clarify the protective mechanism of Davallia mariesii (DM) against 6-OHDA-induced oxidative damage and apoptosis in B35 cells. The results show that Araiostegia perdurans (AP) and DM extracts have better radical scavenging capacities against 1,1-diphenyl-2-picryhydrazyl (DPPH) and reactive oxygen species (ROS) than other Davalliaceae species. However, only DM extract inhibited 6-OHDA autoxidation under cell-free systems and increased cell viability, compared to B35 cells solely exposed to 6-OHDA. DM extract decreased apoptosis and restored mitochondrial expression in 6-OHDA-treated B35 cells. Additional data indicated that DM extract decreased intracellular ROS and nitric oxide levels generated by 6-OHDA exposure. DM extract also restored glutathione (GSH) levels and the activities of glutathione peroxidase and reductase, and then decreased the elevated malondialdehyde (MDA) levels. Finally, DM extract regulated the protein expression of the caspase cascade and PI3K/AKT/GSK-3β pathways. These results suggest that the protective mechanism of DM extract against 6-OHDA-induced oxidative damage and apoptosis might be related to its radical scavenging capacity, maintaining the mitochondrial function to inhibit the Bcl-2/caspase cascade pathway and activating intracellular antioxidant defenses (GSH recycling, HO-1 and NQO-1) by modulating the activation of the PI3K/AKT/GSK-3β pathway.


2007 ◽  
Vol 250 (1) ◽  
pp. 107-116 ◽  
Author(s):  
Martin Michaelis ◽  
Jaroslav Cinatl ◽  
Puja Anand ◽  
Florian Rothweiler ◽  
Rouslan Kotchetkov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document