Engineering a Minimal Leucine-rich Repeat IgG-binding Module

Author(s):  
George C. Markou ◽  
Ayako Ohoka ◽  
Casim A. Sarkar
1989 ◽  
Vol 61 (01) ◽  
pp. 111-116
Author(s):  
Sharron L Pfueller ◽  
Robyn A Bilston ◽  
Dana Logan ◽  
Rosemary David ◽  
Ian G Sloan ◽  
...  

SummaryReactivity of quinine- and quinidine-dependent antiplatelet antibodies has been compared in platelet-rich-plasma (PRP) from normal donors and from patients with von Willebrand’s disease (vWd). One quinine-dependent antibody (Q. Ab) caused platelet aggregation and [14C] serotonin release with only 7 of 12 normal donors, while another Q. Ab and a quinidine-dependent antibody (Qd. Ab) caused aggregation and release with all 12. Drug- dependent IgG binding and PF 3 availability induced by the antibodies were, however, comparable in all donors. Differences in responsiveness were associated with platelets and not plasma. vWd platelets showed normal drug-dependent IgG binding, but decreased aggregation and serotonin release to most drug- dependent antibodies. Responsiveness was not restored by purified vWf:Ag, but, in one case, was corrected by normal plasma or cryoprecipitate. Drug-dependent binding of the Q. Ab which caused variable responsiveness in normals was to the same platelet antigens (GPIb and GPIIIa) in both normal and vWd platelets and did not require plasma components. Reduced PF 3 availability was seen with some antibodies in some vWd patients. Plasma from two of these patients inhibited aggregation of normal platelets to Q. Ab and one of these inhibited aggregation to ADP. Antiplatelet antibodies were detected in these two plasmas by ELISA. Thus some Q. Ab produce different responses with platelets from different donors. In vWd, reduced responsiveness to Q.Ab and Qd. Ab may result from production of inhibitory antiplatelet antibodies.


1994 ◽  
Vol 72 (06) ◽  
pp. 964-972 ◽  
Author(s):  
Jeffery L Kutok ◽  
Barry S Coller

SummaryWe produced a murine monoclonal antibody, 7H2, and localized its epitope to one or more small regions on platelet glycoprotein (GP) Ilia. 7H2-IgG and 7H2-F(ab’)2 completely inhibit platelet aggregation and fibrinogen binding at low agonist concentrations, but only partially inhibit aggregation and fibrinogen binding at high agonist concentrations; 7H2-Fab has no effect on aggregation or fibrinogen binding at any agonist concentration. 7H2-IgG binds to the entire platelet population as judged by flow cytometry. At near saturating concentrations, ∼40,000 7H2-IgG antibody molecules bind per platelet. In contrast, ∼80,000 7H2 Fab molecules bind per platelet, suggesting that 7H2-IgG binding is bivalent. 7H2 was unable to inhibit fibrinogen binding to purified, immobilized GPIIb/IIIa. These data indicate that the bivalent binding of 7H2 to GPIIIa is required for its partial inhibition of fibrinogen binding to platelets, perhaps through dimerization of GPIIb/IIIa surface receptors (or more complex GPIIb/IIIa redistribution triggered by 7H2 binding) resulting in limited accessibility of fibrinogen to its binding site(s).


1981 ◽  
Vol 45 (01) ◽  
pp. 027-033 ◽  
Author(s):  
K Sugiura ◽  
M Steiner ◽  
M Baldini

SummaryThe function of nonimmune IgG associated with platelets is unknown. In a series of experiments we have investigated this problem, relating amount of platelet-associated IgG (PAIgG) to platelet volume, serotonin release, adherence of platelets to monocytes and platelet senescence. Most of these studies were performed with human platelets. Platelets freed of preexisting PAIgG by incubation at 22° C were incubated with IgG in a series of concentrations ranging from 0.4 — 27.0 X10-6 M. The IgG preparations used were demonstrably free of aggregated forms of the protein. The amount of PAIgG bound to platelets was determined by the use of fluorescein isothiocyanate-conjugated anti-IgG antibody (F-anti-IgG antibody) which was quantified in a fluorospectrophotometer. Newly bound IgG was assayed similarly by the use of F-IgG. A dose-dependent increase in platelet volume was associated with the binding of nonimmune IgG by platelets. The process which leveled off at an IgG concentration of 1.2 —1.5 X10-5 M was almost fully reversible and was not due to platelet shape change or aggregation. Release of serotonin from IgG-treated platelets was relatively small but to the extent that it occurred was positively related to the IgG concentration to which platelets were exposed. Adherence to autologous monocytes studied quantitatively by the use of formaldehyde-fixed cells was also positively related to the amount of IgG on the platelets. Normal or IgG-defident serum had a potent inhibitory (noncompetitive) action on the binding of F-IgG and F-anti-human IgG antibody to human platelets. Cohorts of platelets prepared in rabbits during the recovery phase of immunological thrombocytopenia induced by injection of heterologous antiserum, showed an age-dependent increase of PAIgG and of IgG binding. These results suggest that PAIgG plays a role in the clearance of senescent platelets.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dongmei Ma ◽  
Bei Liu ◽  
Lingqiao Ge ◽  
Yinyin Weng ◽  
Xiaohui Cao ◽  
...  

Abstract Background Alfalfa (Medicago sativa L.) is a perennial legume extensively planted throughout the world as a high nutritive value livestock forage. Flowering time is an important agronomic trait that contributes to the production of alfalfa hay and seeds. However, the underlying molecular mechanisms of flowering time regulation in alfalfa are not well understood. Results In this study, an early-flowering alfalfa genotype 80 and a late-flowering alfalfa genotype 195 were characterized for the flowering phenotype. Our analysis revealed that the lower jasmonate (JA) content in new leaves and the downregulation of JA biosynthetic genes (i.e. lipoxygenase, the 12-oxophytodienoate reductase-like protein, and salicylic acid carboxyl methyltransferase) may play essential roles in the early-flowering phenotype of genotype 80. Further research indicated that genes encode pathogenesis-related proteins [e.g. leucine rich repeat (LRR) family proteins, receptor-like proteins, and toll-interleukin-like receptor (TIR)-nucleotide-binding site (NBS)-LRR class proteins] and members of the signaling receptor kinase family [LRR proteins, kinases domain of unknown function 26 (DUF26) and wheat leucine-rich repeat receptor-like kinase10 (LRK10)-like kinases] are related to early flowering in alfalfa. Additionally, those involved in secondary metabolism (2-oxoglutarate/Fe (II)-dependent dioxygenases and UDP-glycosyltransferase) and the proteasome degradation pathway [really interesting new gene (RING)/U-box superfamily proteins and F-box family proteins] are also related to early flowering in alfalfa. Conclusions Integrated phenotypical, physiological, and transcriptomic analyses demonstrate that hormone biosynthesis and signaling pathways, pathogenesis-related genes, signaling receptor kinase family genes, secondary metabolism genes, and proteasome degradation pathway genes are responsible for the early flowering phenotype in alfalfa. This will provide new insights into future studies of flowering time in alfalfa and inform genetic improvement strategies for optimizing this important trait.


Sign in / Sign up

Export Citation Format

Share Document