Sequence Engineering of an Aspergillus niger Tannase to Produce in Pichia pastoris a Single-Chain Enzyme with High Specific Activity

Author(s):  
Daniela Ordaz-Pérez ◽  
José Antonio Fuentes-Garibay ◽  
Martha Guerrero-Olazarán ◽  
José María Viader-Salvadó
2019 ◽  
Vol 35 (1) ◽  
pp. 38-44
Author(s):  
M.N. Lazareva ◽  
E.I. Semenko ◽  
S.P. Sineoky

β-Mannanases are enzymes for the industrial application and they can be used, in particular, in the feed industry. The most important requirements for feed enzymes are broad pH range, thermal stability and high specific activity. The efficient expression of the man1 gene encoding Aspergillus aculeatus β-1,4-mannanases in Pichia pastoris yeast cells has been obtained for the first time. The industrially valuable properties of the enzyme were confirmed. The obtained data indicate that the man1 gene from A. aculeatus is potentially useful for the construction of industrial mannanase producers on the basis of the Pichia pastoris yeast. recombinant β-mannanase, Pichia pastoris, Aspergillus aculeatus, overexpression. The work was financially supported by State project №595-00004-18 PR and used the help of the National Bioresource Center - Russian National Collection of Industrial Microorganisms NRC «Kurchatov Institute» - GosNIIgenetika (Moscow, Russia).


1982 ◽  
Vol 47 (03) ◽  
pp. 244-248 ◽  
Author(s):  
D P Thomas ◽  
Rosemary E Merton ◽  
T W Barrowcliffe ◽  
L Thunberg ◽  
U Lindahl

SummaryThe in vitro and in vivo characteristics of two oligosaccharide heparin fragments have been compared to those of unfractionated mucosal heparin. A decasaccharide fragment had essentially no activity by APTT or calcium thrombin time assays in vitro, but possessed very high specific activity by anti-Factor Xa assays. When injected into rabbits at doses of up to 80 ¼g/kg, this fragment was relatively ineffective in impairing stasis thrombosis despite producing high blood levels by anti-Xa assays. A 16-18 monosaccharide fragment had even higher specific activity (almost 2000 iu/mg) by chromogenic substrate anti-Xa assay, with minimal activity by APTT. When injected in vivo, this fragment gave low blood levels by APTT, very high anti-Xa levels, and was more effective in preventing thrombosis than the decasaccharide fragment. However, in comparison with unfractionated heparin, the 16-18 monosaccharide fragment was only partially effective in preventing thrombosis, despite producing much higher blood levels by anti-Xa assays.It is concluded that the high-affinity binding of a heparin fragment to antithrombin III does not by itself impair venous thrombogenesis, and that the anti-Factor Xa activity of heparin is only a partial expression of its therapeutic potential.


1962 ◽  
Vol 08 (03) ◽  
pp. 425-433 ◽  
Author(s):  
Ewa Marciniak ◽  
Edmond R Cole ◽  
Walter H Seegers

SummarySuitable conditions were found for the generation of autoprothrombin C from purified prothrombin with the use of Russell’s viper venom or trypsin. DEAE chromatographed prothrombin is structurally altered and has never been found to yield autoprothrombin C and also did not yield it when Russell’s viper venom or trypsin were used. Autoprothrombin C is derived from prothrombin with tissue extract thromboplastin, but not in large amounts with the intrinsic clotting factors. With the latter thrombin and autoprothrombin III are the chief activation products. Autoprothrombin III concentrates were prepared from serum and upon activation with 25% sodium citrate solution or with Russell’s viper venom large amounts of autoprothrombin C were obtained, and this was of high specific activity. Theoretically trypsin is not a thrombolytic agent, but on the contrary should lead to intravascular clotting.


Author(s):  
Selfela Restu Adina ◽  
Antonius Suwanto ◽  
Anja Meryandini ◽  
Esti Puspitasari

Abstract Background Lipases are promising biocatalysts for industrial applications and attract attention to be explored. A novel acidic lipase has been isolated from the lipolytic bacteria Micrococcus luteus EMP48-D (LipEMP48-D) screened from tempeh. The lipase gene had previously been overexpressed in Escherichia coli BL21, but the expression level obtained was relatively low. Here, to improve the expression level, the lipase gene was cloned to Pichia pastoris. We eliminated the native signal sequence of M. luteus and replaced it with α-mating factor (α-MF) signal sequence. We also optimized and synthesized the lipase gene based on codon preference in P. pastoris. Results LipEMP48-D lipase was expressed as an extracellular protein. Codon optimization has been conducted for 20 codons, with the codon adaption index reaching 0.995. The highest extracellular lipase activity obtained reached 145.4 ± 4.8 U/mg under AOX1 promoter in P. pastoris KM71 strain, which was 9.7-fold higher than the previous activity in E. coli. LipEMP48-D showed the highest specific activity at pH 5.0 and stable within the pH range 3.0–5.0 at 40 °C. LipEMP48-D also has the capability of hydrolyzing various long-chain triglycerides, particularly olive oil (100%) followed by sunflower oil (88.5%). LipEMP48-D exhibited high tolerance for various polar organic solvents with low log P, such as isopropanol (115.7%) and butanol (114.6%). The metal ions (Na+, K+, Ca2+, Mg2+, Mn+) decreased enzyme activity up to 43.1%, while Fe2+ increased relative activity of enzymes up to 200%. The conversion of free fatty acid (FFA) into fatty acid methyl ester (FAME) was low around 2.95%. Conclusions This study was the first to report overexpression of Micrococcus lipase in yeast. The extracellular expression of this acidic lipase could be potential for biocatalyst in industrial fields, especially organic synthesis, food industry, and production of biodiesel.


Sign in / Sign up

Export Citation Format

Share Document