scholarly journals Preparation of novel CdS-graphene/TiO2 composites with high photocatalytic activity for methylene blue dye under visible light

2013 ◽  
Vol 36 (5) ◽  
pp. 869-876 ◽  
Author(s):  
C Y PARK ◽  
U KEFAYAT ◽  
N VIKRAM ◽  
T GHOSH ◽  
W C OH ◽  
...  
2017 ◽  
Vol 41 (23) ◽  
pp. 14689-14695 ◽  
Author(s):  
Muhammad Naeem Ashiq ◽  
Samia Irshad ◽  
Muhammad Fahad Ehsan ◽  
Sidra Rehman ◽  
Saima Farooq ◽  
...  

Photocatalytic activity and proposed reaction mechanism of degradation of Methylene Blue dye by SnSe nanostructures.


RSC Advances ◽  
2016 ◽  
Vol 6 (11) ◽  
pp. 8651-8660 ◽  
Author(s):  
Sachin Kumar ◽  
Animesh K. Ojha

The recombination rate of photo-induced electrons and holes for Ni–Co codoped CeO2 nanostructures is reduced significantly, which essentially improve the photocatalytic activity for photo-degradation of MB dye.


2020 ◽  
Vol 16 ◽  
Author(s):  
Radhakrishna S. Sutar ◽  
Rani P. Barkul ◽  
Meghshyam K. Patil

Background: Different photocatalysts such as TiO2, ZnO, WO3 have been used for degradation of organic pollutants. However, these materials having some limitations, which has been affected the catalytic efficiency in the various transformations. The composites of these materials with other oxide can produce better results by tuning structural as well as optoelectrical properties. The composite of TiO2 with ZrO2 has attracted attention due to their use in different areas as ZrO2 and TiO2 have similar physicochemical features. Methods: This research contain the preparation of ZrO2-TiO2 nanocomposites by hydrothermal method and analysis of photocatalytic activity for degradation of methylene blue and mixture of dyes under visible light irradiation. Results: Physicochemical characterization of ZrO2-TiO2 nanocomposites has been studied by using different techniques. Prepared catalysts has shown anatase phase of TiO2 and tetragonal phase of ZrO2. XRD, FESEM and HRTEM have supported the nanocrystalline nature of the composites. The photocatalytic activity of composites and bare TiO2 samples were demonstrated for the degradation of methylene blue dye. Enhanced activity has been shown by composite having Ti:Zr 3:1 molar proportion i.e., Ti3Zr. Effect of concentration of methylene blue, pH of solution, catalyst loading has been studied by using Ti3Zr. Also, degradation of mixture of three dyes namely methylene blue, rhodamine B and methyl orange has been studied. Conclusion: In summary, prepared zro2-tio2 composites found to be nanocrystalline and visible light active. these catalysts has shown activity for photocatalytic degradation of methylene blue and mixture of dyes.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
R. M. Mohamed ◽  
I. A. Mkhalid ◽  
E. S. Baeissa ◽  
M. A. Al-Rayyani

The photocatalytic activity of Fe/ZnO/SiO2catalysts under visible-light irradiation for the degradation of methylene blue was evaluated. The effect of pH, illumination time, amount of catalyst loaded, and initial dye concentration on the degradation efficiency of methylene blue was investigated. The results reveal that the optimum photocatalytic oxidation conditions of methylene blue are as follows:pH=4and illumination time is 30 min, the amount of catalyst loading is 0.075 g/L and 50 ppm methylene blue dye concentration. Under these conditions, the removal efficiency of methylene blue was 100%.


2018 ◽  
Vol 17 (3) ◽  
pp. 312-321
Author(s):  
Long Men ◽  
Zhan Ge ◽  
Sun Meng-Yun ◽  
Zhuang Hong ◽  
Wang Ran

In this article, we studied the preparation of Fe3+/TiO2 nanoparticles and the photocatalytic disinfection effects of two typical foodborne microorganisms, a gram-negative bacterium (Salmonella typhimurium) and a gram-positive bacterium (Listeria monocytogenes), in meat products. The physical properties of Fe3+/TiO2 nanoparticles embedded with various levels of Fe3+ (0%–10%) and synthesized through an impregnation process were investigated using X-ray diffraction, transmission electron microscopy, and UV-vis spectrophotometer, and their photocatalytic activities were evaluated by measuring the degradation of methylene blue dye and the disinfection of foodborne pathogens S. typhimurium and L. monocytogenes under visible light and UV light. Fe3+ ions were found to be scattered across TiO2 surfaces or across TiO2 crystal lattices as microcrystals. However, the capacity for TiO2 nanoparticles to absorb visible light was significantly enhanced after they were embedded with.Fe3+/TiO2 nanoparticles with molar ratios (R) of Fe3+ to TiO2 of 0.001:1, 0.005:1, and 0.01:1 exhibited higher levels of methylene blue dye photocatalytic degradation and higher levels of foodborne pathogen photocatalytic disinfection than the TiO2 control. However, nanoparticles containing >1% Fe3+ exhibited lower levels of photocatalytic activity than the TiO2 control. Salmonella typhimurium was more resistant to the nano-Fe3+/TiO2 treatment than L. monocytogenes under visible and UV light conditions. These experiments demonstrate that embedding Fe3+ in TiO2 nanoparticles does not remarkably influence the TiO2 nanoparticle size or structure. Embedding appropriate levels of Fe3+ content (0.1%–1%) can enhance the photocatalytic activity of TiO2 nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document