scholarly journals Effect of working pressure and annealing temperature on microstructure and surface chemical composition of barium strontium titanate films grown by pulsed laser deposition

2015 ◽  
Vol 38 (6) ◽  
pp. 1645-1650 ◽  
Author(s):  
ZAHRA SAROUKHANI ◽  
NEMAT TAHMASEBI ◽  
SEYED MOHAMMAD MAHDAVI ◽  
ALI NEMATI
2000 ◽  
Vol 617 ◽  
Author(s):  
V. Craciun ◽  
J. M. Howard ◽  
E. S. Lambers ◽  
R. K. Singh

AbstractBarium strontium titanate (BST) thin films were grown directly on Si substrates by an in situ ultraviolet (UV)-assisted pulsed laser deposition (UVPLD) technique. With respect to films grown by conventional (i.e. without UV illumination) pulsed laser deposition (PLD), the UVPLD grown films exhibited improved structural and electrical properties. The dielectric constant of a 40-nm thick film deposited at 650 °C was determined to be 281, the leakage current density was approximately 4×10−8 A/cm2at 100 kV/cm, and the density of interface states at the flat-band voltage was found to be approximately 5.6×1011 eV−1 cm−2 X-ray photoelectron spectroscopy investigations found that the surface of the grown films exhibited an additional Ba-containing phase, besides the usual BST perovskite phase, which was likely caused by stress and/or oxygen vacancies. The amount of this new phase was always smaller and very superficial for UVPLD grown films, which can explain their better overall properties.


2000 ◽  
Vol 656 ◽  
Author(s):  
Costas G. Fountzoulas ◽  
J. D. Demaree ◽  
Steven H. Mcknight

ABSTRACTBarium strontium titanate (BSTO) films were synthesized by the pulsed laser deposition technique (PLD) on silicon substrates at room temperature. The thin films were synthesized at ambient temperature and 30 mT oxygen partial pressure, with 300, 400 and 500 mJ/cm2 laser fluence at 5, 10 and 20 pulses per second on silicon wafer substrates. All films were subsequently post-annealed at 750°C in a continuous oxygen stream. The microstructure, crystallinity and lattice constant of the BSTO films were studied with the aid of atomic force microscopy (FEM) and Glancing Angle X-ray Diffraction analysis (GAXRD). The hardness and modulus of elasticity of the films were studied with the aid of a nanohardness indenter. The film stoichiometry was determined with the aid of Rutherford Backscattering Spectrometry (RBS). The results of this research will be combined with the results of our previous work [1, 2] on the effect of substrate temperature and oxygen partial pressure on the microstructure and properties of the BSTO films in order to construct a structural zone model (SZM) of the BSTO films synthesized by PLD.


2003 ◽  
Vol 765 ◽  
Author(s):  
Hyun Goo Kwon ◽  
Youngwoo Oh ◽  
Jung Woo Park ◽  
Young Kuk Lee ◽  
Chang Gyoun Kim ◽  
...  

AbstractWe report the synthesis of new precursors Ba(thd)2(tmeea) and Sr(thd)2(tmeea), where tmeea = tris[2-(2-methoxyethoxy)ethyl]amine, and the LS-MOCVD of barium strontium titanate (BSTO) thin films using these precursors. Thin films of BSTO were grown on Pt(111)/SiO2/Si(100) substrates by LS-MOCVD using the cocktail source consisting of the conventional Ti precursor Ti(thd)2(OiPr)2 and the new Ba and Sr precursors. As-grown films were characterized by SEM, XRD, XRF, and C-V measurement. BSTO films grown at 420°C were stoichiometric barium strontium titanate with very smooth surface morphology and their dielectric constants were found to be as large as 320. The dependence of composition, microstructure and the electrical properties of the BSTO films on the growth temperature, annealing temperature, and working pressure will be discussed.


2000 ◽  
Vol 655 ◽  
Author(s):  
Costas G. Fountzoulas ◽  
J. D. Demaree ◽  
Steven H. McKnight

AbstractBarium strontium titanate (BSTO) films were synthesized by the pulsed laser deposition technique (PLD) on silicon substrates at room temperature. The thin films were synthesized at ambient temperature and 30 mT oxygen partial pressure, with 300, 400 and 500 mJ/cm2 laser fluence at 5, 10 and 20 pulses per second on silicon wafer substrates. All films were subsequently post-annealed at 750°C in an continuous oxygen stream. The microstructure, crystallinity and lattice constant of the BSTO films were studied with the aid of atomic force microscopy (FEM) and Glancing Angle X-ray Diffraction analysis (GAXRD). The hardness and modulus of elasticity of the films were studied with the aid of a nanohardness indenter. The film stoichiometry was determined with the aid of Rutherford Backscattering Spectrometry (RBS). The results of this research will be combined with the results of our previous work [1, 2] on the effect of substrate temperature and oxygen partial pressure on the microstructure and properties of the BSTO films in order to construct a structural zone model (SZM) of the BSTO films synthesized by PLD.


2003 ◽  
Vol 79 (2-3) ◽  
pp. 164-168 ◽  
Author(s):  
S.G Lu ◽  
X.H Zhu ◽  
C.L Mak ◽  
K.H Wong ◽  
H.L.W Chan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document