scholarly journals A new form of a Halpin–Tsai micromechanical model for characterizing the mechanical properties of carbon nanotube-reinforced polymer nanocomposites

2019 ◽  
Vol 42 (3) ◽  
Author(s):  
Mohammad Kazem Hassanzadeh-Aghdam ◽  
Jamaloddin Jamali
2018 ◽  
Vol 40 (S2) ◽  
pp. E1219-E1234 ◽  
Author(s):  
Jafar Amraei ◽  
Jafar E. Jam ◽  
Behrouz Arab ◽  
Roohollah D. Firouz‐Abadi

Author(s):  
Reza Moheimani ◽  
M Hasansade

This paper describes a closed-form unit cell micromechanical model for estimating the effective thermal conductivities of unidirectional carbon nanotube reinforced polymer nanocomposites. The model incorporates the typically observed misalignment and curvature of carbon nanotubes into the polymer nanocomposites. Also, the interfacial thermal resistance between the carbon nanotube and the polymer matrix is considered in the nanocomposite simulation. The micromechanics model is seen to produce reasonable agreement with available experimental data for the effective thermal conductivities of polymer nanocomposites reinforced with different carbon nanotube volume fractions. The results indicate that the thermal conductivities are strongly dependent on the waviness wherein, even a slight change in the carbon nanotube curvature can induce a prominent change in the polymer nanocomposite thermal conducting behavior. In general, the carbon nanotube curvature improves the nanocomposite thermal conductivity in the transverse direction. However, using the straight carbon nanotubes leads to maximum levels of axial thermal conductivities. With the increase in carbon nanotube diameter, an enhancement in nanocomposite transverse thermal conductivity is observed. Also, the results of micromechanical simulation show that it is necessary to form a perfectly bonded interface if the full potential of carbon nanotube reinforcement is to be realized.


2018 ◽  
Vol 30 (3) ◽  
pp. 463-478 ◽  
Author(s):  
MK Hassanzadeh-Aghdam ◽  
MJ Mahmoodi ◽  
R Ansari ◽  
A Darvizeh

The effects of interphase characteristics on the elastic behavior of randomly dispersed carbon nanotube–reinforced shape memory polymer nanocomposites are investigated using a three-dimensional unit cell–based micromechanical method. The interphase region is formed due to non-bonded van der Waals interaction between a carbon nanotube and a shape memory polymer. The influences of temperature, diameter, volume fraction, and arrangement type of carbon nanotubes within the matrix as well as two interphase factors, including adhesion exponent and thickness on the carbon nanotube/shape memory polymer nanocomposite’s longitudinal and transverse elastic moduli, are explored extensively. Moreover, the results are presented for the shape memory polymer nanocomposites containing randomly oriented carbon nanotubes. The obtained results clearly demonstrate that the interphase region plays a crucial role in the modeling of the carbon nanotube/shape memory polymer nanocomposite’s elastic moduli. It is observed that the nanocomposite’s elastic moduli remarkably increase with increasing interphase thickness or decreasing adhesion exponent. It is found that when the interphase is considered in the micromechanical simulation, the shape memory polymer nanocomposite’s elastic moduli non-linearly increase as the carbon nanotube diameter decreases. The predictions of the present micromechanical model are compared with those of other analytical methods and available experiments.


Sign in / Sign up

Export Citation Format

Share Document