Physical Origin of Distinct Mechanical Properties of Polymer Tethered Graphene Nanosheets Reinforced Polymer Nanocomposites Revealed by Nonequilibrium Molecular Dynamics Simulations

2021 ◽  
pp. 2100044
Author(s):  
Xu Zhang ◽  
Jialiang Chen ◽  
Tianxi Liu
2018 ◽  
Vol 53 (9) ◽  
pp. 1261-1274 ◽  
Author(s):  
Jafar Amraei ◽  
Jafar E Jam ◽  
Behrouz Arab ◽  
Roohollah D Firouz-Abadi

In the current work, the effect of interphase region on the mechanical properties of polymer nanocomposites reinforced with nanoparticles is studied. For this purpose, a closed-form interphase model as a function of radial distance based on finite-size representative volume element is suggested to estimate the mechanical properties of particle-reinforced nanocomposites. The effective Young’s and shear moduli of thermoplastic polycarbonate-based nanocomposites for a wide range of sizes and volume fractions of silicon carbide nanoparticles are investigated using the proposed interphase model and molecular dynamics simulations. In order to investigate the effect of particle size, several unit cells of the same volume fraction, but with different particle radii have been considered. The micromechanics-based homogenization results are in good agreement with the results of molecular dynamics simulations for all models. This study demonstrates that the suggested micromechanical interphase model has the capacity to estimate effective mechanical properties of polymer-based nanocomposites reinforced with spherical inclusions.


2019 ◽  
Vol 21 (34) ◽  
pp. 18714-18726 ◽  
Author(s):  
Naishen Gao ◽  
Guanyi Hou ◽  
Jun Liu ◽  
Jianxiang Shen ◽  
Yangyang Gao ◽  
...  

Using coarse-grained molecular-dynamics simulations, we have successfully fabricated ideal, mechanically-interlocked polymer nanocomposites exhibiting a significant mechanical enhancement effect.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 146
Author(s):  
Alessandro Coretti ◽  
Lamberto Rondoni ◽  
Sara Bonella

We illustrate how, contrary to common belief, transient Fluctuation Relations (FRs) for systems in constant external magnetic field hold without the inversion of the field. Building on previous work providing generalized time-reversal symmetries for systems in parallel external magnetic and electric fields, we observe that the standard proof of these important nonequilibrium properties can be fully reinstated in the presence of net dissipation. This generalizes recent results for the FRs in orthogonal fields—an interesting but less commonly investigated geometry—and enables direct comparison with existing literature. We also present for the first time a numerical demonstration of the validity of the transient FRs with nonzero magnetic field via nonequilibrium molecular dynamics simulations of a realistic model of liquid NaCl.


Sign in / Sign up

Export Citation Format

Share Document