scholarly journals Numerical investigation of temperature distribution and melt pool geometry in laser beam welding of a Zr–1% Nb alloy nuclear fuel rod end cap

2019 ◽  
Vol 42 (4) ◽  
Author(s):  
G Satyanarayana ◽  
K L Narayana ◽  
B Nageswara Rao
Author(s):  
Iñigo Hernando ◽  
Jon Iñaki Arrizubieta ◽  
Aitzol Lamikiz ◽  
Eneko Ukar

A numerical model was developed for predicting the bead geometry and microstructure in Laser Beam Welding of 2 mm thickness Inconel 718 sheets. The experiments were carried out with a 1 kW maximum power fiber laser coupled with a galvanometric scanner. Wobble strategy was employed for sweeping 1 mm wide circular areas for creating the weld seams and a specific tooling was manufactured for supplying protective Argon gas during the welding process. The numerical model takes into account both the laser beam absorption and the melt-pool fluid movement along the bead section, resulting in a weld geometry that depends on the process input parameters, such as feed rate and laser power. The microstructure of the beads was also estimated based on the cooling rate of the material. Features as bead upper and bottom final shapes, weld penetration and dendritic arm spacing were numerically and experimentally analyzed and discussed. The results given by the numerical analysis agree with the tests, making the model a robust predictive tool.


Author(s):  
Sandeep Patil ◽  
Siddarth Chintamani ◽  
Rajeev Kumar ◽  
Ratan Kumar ◽  
Brian H. Dennis

Critical safety studies of a nuclear power plants are often associated with inadequate and improper cooling of the reactor core or the spent fuel rods. Coolant flow over the hot nuclear fuel rods often gets stalled during major accidents resulting in high temperature levels. These elevated temperature levels can potentially melt the fuel rod material and cause the release of radioactive gases. Research activities, both numerical and experimental in nature to explore these rare but potentially catastrophic possibilities have resulted in sophisticated numerical codes capable of simulating the various post-accident scenarios. These codes, although reasonably accurate and reliable have steep learning curves and are not often very user-friendly. A fast and accurate prediction of the critical temperature conditions using popular commercially available software packages is the subject of current study. Results from this parametric study of temperature distribution over a partially cooled fuel rod carried out using ANSYS as the numerical analysis tool is reported. Nuclear fuel rods being inadequately cooled inside a stagnant pool of coolant water in an accident scenario resulting in disrupted coolant flow has been simulated. This situation can arise within the reactor (design-basis accidents) or in the waste-fuel storage (as faced in Fukushima). In these situations, the fuel rod is often left partially immersed in the coolant water resulting in immersed portion of the rod cooled by water and the exposed portion cooled by air leading to non-uniform and improper cooling of the system. Realistic dimensions and materials as in commercial nuclear fuel rod have been used in the study. Taking advantage of the symmetry, an axisymmetric radial plane sliced longitudinally has been analyzed. Variations in the tangential direction have been neglected. The heat transfer problem uses homogeneous convective boundary conditions and assumes temperature dependent thermal conductivity. The parameters varied are the coolant level and the heat generation rate inside the fuel rod. A macro to automatically capture the transients in the temperatures was written in ANSYS (a finite element package). The governing energy equations were implicitly solved using finite volume scheme in MATLAB. ANSYS results are in close agreement with those obtained using MATLAB. The centerline temperature of the fuel rod shows a sharp rise below a certain coolant level.


Metals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 536 ◽  
Author(s):  
Iñigo Hernando ◽  
Jon Arrizubieta ◽  
Aitzol Lamikiz ◽  
Eneko Ukar

A numerical model was developed for predicting the bead geometry and microstructure in laser beam welding of 2 mm thickness Inconel 718 sheets. The experiments were carried out with a 1 kW maximum power fiber laser coupled with a galvanometric scanner. Wobble strategy was employed for sweeping 1 mm wide circular areas for creating the weld seams, and a specific tooling was manufactured for supplying protective argon gas during the welding process. The numerical model takes into account both the laser beam absorption and the melt-pool fluid movement along the bead section, resulting in a weld geometry that depends on the process input parameters, such as feed rate and laser power. The microstructure of the beads was also estimated based on the cooling rate of the material. Features such as bead upper and bottom final shapes, weld penetration, and dendritic arm spacing, were numerically and experimentally analyzed and discussed. The results given by the numerical analysis agree with the tests, making the model a robust predictive tool.


2014 ◽  
Vol 56 ◽  
pp. 515-524 ◽  
Author(s):  
M. Bachmann ◽  
V. Avilov ◽  
A. Gumenyuk ◽  
M. Rethmeier

Sign in / Sign up

Export Citation Format

Share Document